Abstract:
A silicon solar cell and a method of manufacturing the same are disclosed. The silicon solar cell includes a silicon semiconductor substrate doped with first conductive impurities, an emitter layer doped with second conductive impurities having polarities opposite polarities of the first conductive impurities on the substrate, an anti-reflective layer on an entire surface of the substrate, an upper electrode that passes through the anti-reflective layer and is connected to the emitter layer, and a lower electrode connected to a lower portion of the substrate. The emitter layer includes a first emitter layer heavily doped with the second conductive impurities and a second emitter layer lightly doped with the second conductive impurities. A surface resistance of the second emitter layer is 100 Ohm/sq to 120 Ohm/sq.
Abstract:
A solar cell includes a photoelectric conversion layer; and a front electrode on the photoelectric conversion layer, wherein the front electrode includes a plurality of first finger electrodes; a plurality of second finger electrodes; a bus electrode directly connected to at least one of the plurality of first finger electrodes; a plurality of connecting electrodes connected to the plurality of second finger electrodes, the plurality of connecting electrodes forming at least one space therebetween; and an auxiliary electrode formed at the at least one space, wherein the auxiliary electrode connects at least two connecting electrodes of the plurality of connecting electrodes.
Abstract:
A solar cell, a solar cell manufacturing device, and a method for manufacturing the solar cell are discussed. The solar cell manufacturing device includes a chamber; an ion implantation unit configured to implant ions into a substrate inside the chamber and a mask positioned between the ion implantation unit and the substrate. The mask includes a first opening to form a lightly doped region having a first concentration at one surface of the substrate, a second opening to form a heavily doped region having a second concentration higher than the first concentration at the one surface of the substrate, and at least one connector formed to cross the second opening. The second opening includes finger openings formed in a first direction, and bus openings formed in a second direction crossing the first direction.
Abstract:
A method of manufacturing a solar cell is discussed. The method of manufacturing the solar cell includes: forming a conductive region on a semiconductor substrate; forming an electrode connected to the conductive region; and post-processing the semiconductor substrate to passivate the semiconductor substrate. The post-processing of the semiconductor substrate comprises a main processing process for heat-treating the semiconductor substrate while providing light to the semiconductor substrate. A temperature of the main processing process is about 100° C. to about 800° C., and the temperature and light intensity of the main processing process satisfy Equation of 1750−31.8·T+(0.16)·T2≦I. Here, T is the temperate (° C.) of the main processing process, and I is the light intensity (mW/cm2) of the main processing process.
Abstract:
A solar cell is discussed, which includes a pair of connecting electrodes having a portion having a width smaller than a width of a plurality of bus bar electrodes, and the pair of connecting electrodes connects a plurality of second finger electrodes to both sides of an end of one of the plurality of bus bar electrodes, respectively, wherein the end of the one of the plurality of bus bar electrodes being positioned in a second direction, wherein an area not including the plurality of second finger electrodes is positioned between the pair of connecting electrodes, and wherein an auxiliary electrode not connected to the plurality of second finger electrodes and having a width smaller than the width of the plurality of bus bar electrodes is disposed in the area not including the plurality of second finger electrodes.
Abstract:
A post-processing apparatus of a solar cell carries out a post-processing operation including a main period for heat-treating a solar cell including a semiconductor substrate while providing light to the solar cell. The post-processing apparatus includes a main section to carry out the main period. The main section includes a first heat source unit to provide heat to the semiconductor substrate and a light source unit to provide light to the semiconductor substrate. The first heat source unit and the light source unit are positioned in the main section. The light source unit includes a light source constituted by a plasma lighting system (PLS).