Abstract:
Sample purification systems include a particle extraction assembly having a mixing compartment and a settling compartment. A biological sample is mixed with two liquid phases formulated to effectuate transfer of a biological molecule into a first phase and particulate contaminants into a second phase. The first phase includes a solubilizing salt, the second phase includes an organic molecule, and the mixture can have little or no monoatomic salt or dextran. The molecule-containing first phase can be optionally concentrated without also concentrating the particulate contaminants and introduced into a multi-stage liquid-liquid extractor, by which the biological molecule or molecular contaminants are extracted from the first phase into a third phase, thereby purifying the molecule away from contaminants. The extracted sample can be further purified through a series of processing steps. The system can be run in continuously mode to maintain sterility of the sample.
Abstract:
Sample purification systems include a particle extraction assembly having a mixing compartment and a settling compartment. A biological sample is mixed with two liquid phases formulated to effectuate transfer of a biological molecule into a first phase and particulate contaminants into a second phase. The first phase includes a solubilizing salt, the second phase includes an organic molecule, and the mixture can have little or no monoatomic salt or dextran. The molecule-containing first phase can be optionally concentrated without also concentrating the particulate contaminants and introduced into a multi-stage liquid-liquid extractor, by which the biological molecule or molecular contaminants are extracted from the first phase into a third phase, thereby purifying the molecule away from contaminants. The extracted sample can be further purified through a series of processing steps. The system can be run in continuously mode to maintain sterility of the sample.
Abstract:
A method for filtering a gas includes delivering a gas into a compartment of a gas filter assembly; applying a partial vacuum to the gas filter assembly so that the partial vacuum assists in drawing the gas through a porous filter body of the gas filter assembly that is at least partially disposed within the compartment of the gas filter assembly; and regulating the application of the partial vacuum based on a pressure reading of the gas upstream or downstream of the gas filter assembly.
Abstract:
A method for filtering a gas includes delivering a gas into a compartment of a gas filter assembly; applying a partial vacuum to the gas filter assembly so that the partial vacuum assists in drawing the gas through a porous filter body of the gas filter assembly that is at least partially disposed within the compartment of the gas filter assembly; and regulating the application of the partial vacuum based on a pressure reading of the gas upstream of the gas filter assembly.
Abstract:
A foam sensor system includes a flexible bag comprised of a polymeric material and bounding a compartment. A foam sensor assembly is mounted on the flexible bag and includes a foam contact disposed within the compartment of the flexible bag. A ground assembly is mounted on the flexible bag and includes a ground contact disposed within the compartment of the flexible bag, the foam sensor assembly and the ground assembly being configured so that an electrical potential can be applied between the foam contact and the ground contact.
Abstract:
A method and system for achieving a gas-liquid mass transfer includes delivering into a compartment of a container a liquid, the liquid having an exposed top surface disposed within the compartment. A stream of a gas is passed over the top surface of the liquid so that the stream of gas produces turbulence on the top surface that is sufficient to achieve the gas-liquid mass transfer. In one embodiment the liquid is a culture that includes cells or microorganisms and the mass transfer functions to oxygenate the culture sufficient to sustain the cells or microorganisms.
Abstract:
A method and system for achieving a gas-liquid mass transfer includes delivering into a compartment of a container a liquid, the liquid having an exposed top surface disposed within the compartment. A stream of a gas is passed over the top surface of the liquid so that the stream of gas produces turbulence on the top surface that is sufficient to achieve the gas-liquid mass transfer. In one embodiment the liquid is a culture that includes cells or microorganisms and the mass transfer functions to oxygenate the culture sufficient to sustain the cells or microorganisms.
Abstract:
A system for oxygenating a biological culture includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween; a tubular member projecting into the compartment of the container and terminating at a terminal end; a gas supply coupled with the tubular member and being configured to blow gas through the tubular member; and a mixing element disposed within compartment of the container at a location between the terminal end of the tubular member and the bottom wall of the container, the mixing element being configured to mix the liquid.
Abstract:
A method for mixing a biological suspension includes disposing a biological suspension within a compartment of a container, the biological suspension comprising cells or microorganisms suspended within a nutrient growth medium; and rotating a first drive line and laterally spaced apart second drive line within the compartment of the container so as to cause the drive lines to twist into a helical configuration and mix the biological suspension.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A tube has a first end and an opposing second end, the first end of the tube being disposed within the compartment of the container. A nozzle is disposed within the compartment of the container and has at least one outlet, the nozzle being coupled with the tube so that a gas can be passed through the tube and out the at least one outlet of the nozzle. The nozzle is sufficiently buoyant so that when a fluid is disposed within the compartment of the container, the nozzle floats on the fluid.