摘要:
A method and system for non-invasive assessment of coronary artery stenosis is disclosed. Patient-specific anatomical measurements of the coronary arteries are extracted from medical image data of a patient acquired during rest state. Patient-specific rest state boundary conditions of a model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Patient-specific rest state boundary conditions of the model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Hyperemic blood flow and pressure across at least one stenosis region of the coronary arteries are simulated using the model of coronary circulation and the patient-specific hyperemic boundary conditions. Fractional flow reserve (FFR) is calculated for the at least one stenosis region based on the simulated hyperemic blood flow and pressure.
摘要:
A method and system for non-invasive assessment of coronary artery stenosis is disclosed. Patient-specific anatomical measurements of the coronary arteries are extracted from medical image data of a patient acquired during rest state. Patient-specific rest state boundary conditions of a model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Patient-specific rest state boundary conditions of the model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Hyperemic blood flow and pressure across at least one stenosis region of the coronary arteries are simulated using the model of coronary circulation and the patient-specific hyperemic boundary conditions. Fractional flow reserve (FFR) is calculated for the at least one stenosis region based on the simulated hyperemic blood flow and pressure.
摘要:
A method for modeling a blood vessel includes: (a) modeling a first segment of the blood vessel based on medical imaging data acquired from a subject; (b) computing a first modeling parameter at an interior point of the first segment; and (c) computing a second modeling parameter at a boundary point of the first segment using a viscoelastic wall model. Systems for modeling a blood vessel are described.
摘要:
A method and system for multi-scale anatomical and functional modeling of coronary circulation is disclosed. A patient-specific anatomical model of coronary arteries and the heart is generated from medical image data of a patient. A multi-scale functional model of coronary circulation is generated based on the patient-specific anatomical model. Blood flow is simulated in at least one stenosis region of at least one coronary artery using the multi-scale function model of coronary circulation. Hemodynamic quantities, such as fractional flow reserve (FFR), are computed to determine a functional assessment of the stenosis, and virtual intervention simulations are performed using the multi-scale function model of coronary circulation for decision support and intervention planning.
摘要:
Methods for computing hemodynamic quantities include: (a) acquiring angiography data from a patient; (b) calculating a flow and/or calculating a change in pressure in a blood vessel of the patient based on the angiography data; and (c) computing the hemodynamic quantity based on the flow and/or the change in pressure. Systems for computing hemodynamic quantities and computer readable storage media are described.
摘要:
A method and system for multi-scale anatomical and functional modeling of coronary circulation is disclosed. A patient-specific anatomical model of coronary arteries and the heart is generated from medical image data of a patient. A multi-scale functional model of coronary circulation is generated based on the patient-specific anatomical model. Blood flow is simulated in at least one stenosis region of at least one coronary artery using the multi-scale function model of coronary circulation. Hemodynamic quantities, such as fractional flow reserve (FFR), are computed to determine a functional assessment of the stenosis, and virtual intervention simulations are performed using the multi-scale function model of coronary circulation for decision support and intervention planning.
摘要:
A method for modeling a blood vessel includes: (a) modeling a first segment of the blood vessel based on medical imaging data acquired from a subject; (b) computing a first modeling parameter at an interior point of the first segment; and (c) computing a second modeling parameter at a boundary point of the first segment using a viscoelastic wall model. Systems for modeling a blood vessel are described
摘要:
A method and system for tumor ablation planning and guidance based on a patient-specific model of liver tumor ablation is disclosed. A patient-specific anatomical model of the liver and circulatory system of the liver is estimated from 3D medical image data of a patient. Blood flow in the liver and the circulatory system of the liver is simulated based on the patient-specific anatomical model. Heat diffusion due to ablation is simulated based on a virtual ablation probe position and the simulated blood flow in the liver and the venous system of the liver. Cellular necrosis in the liver is simulated based on the simulated heat diffusion. A visualization of a simulated necrosis region is generated and displayed to the user for decision making and optimal therapy planning and guidance.
摘要:
A mechanical property of anatomy is estimated from a patient in vivo, such as estimating a patient-specific material property of a valve. A morphological model is used to determine anatomy dynamics. A biomechanical model, using the anatomy dynamics, predicts the dynamics, based, at least in part, on one or more material properties. Using an inverse solution based on comparison of dynamics predicted by the biomechanical model and the dynamics determined from the morphological model, values for the material properties are determined.
摘要:
A mechanical property of anatomy is estimated from a patient in vivo, such as estimating a patient-specific material property of a valve. A morphological model is used to determine anatomy dynamics. A biomechanical model, using the anatomy dynamics, predicts the dynamics, based, at least in part, on one or more material properties. Using an inverse solution based on comparison of dynamics predicted by the biomechanical model and the dynamics determined from the morphological model, values for the material properties are determined.