Abstract:
An ion chamber provides a current representative of its characteristics as affected by external conditions, e.g., clean air or smoke. A direct current (DC) voltage is applied to the ion chamber at a first polarity and the resulting current through the ion chamber and parasitic leakage current is measured at the first polarity, then the DC voltage is applied to the ion chamber at a second polarity opposite the first polarity, and the resulting current through the ion chamber and parasitic leakage current is measured at the second polarity. Since substantially no current flows through the ion chamber at the second polarity, the common mode parasitic leakage current contribution may be removed from the total current measurement by subtracting the current measured at the second polarity from the current measured at the first polarity, resulting in just the current through the ion chamber.
Abstract:
A smoke detection sensor ion chamber has a leakage current that is dependent upon the permittivity of the ionized gas (air) in the chamber. Smoke from typical fires is mainly composed of unburned carbon that has diffused in the surrounding air and rises with the heat of the fire. The permittivity of the carbon particles is about 10 to 15 times the permittivity of clean air. The addition of the carbon particles into the air in the ion chamber changes the permittivity thereof that is large enough to detect by measuring a change in the leakage current of the ion chamber.
Abstract:
A microprocessor or microcontroller device may have a central processing unit (CPU), a data memory coupled with the CPU, wherein the data memory is divided into a plurality of memory banks, wherein a bank select register determines which memory bank is currently coupled with the CPU. Furthermore, a first and second set of special function registers are provided, wherein upon occurrence of a context switch either the first or the second set of special function register are selected as active context registers for the CPU and the respective other set of special function registers are selected as inactive context registers, wherein at least some of the registers of the active context registers are memory mapped to more than two memory banks of the data memory and wherein all registers of the inactive context registers are memory mapped to at least one memory location within the data memory.
Abstract:
In a pulse width modulation light emitting diode (LED) controller an error amplifier and output load switch are synchronously controlled to prevent service life shortening current overshoot through the LEDs and slowing discharging currents causing color temperature shifting in the light output from the LEDs. A plurality of switching arrangements for the error amplifier and the compensation network may be provided in a single integrated circuit LED dimming controller, and outputs for controlling a variety of differently configured output power switch combinations for disconnecting or shorting the LEDs, or disconnecting the output capacitor during off times of the modulated dimming control signal.
Abstract:
A combined power and input/output system for an electronic device includes a host system; a target system operably coupled to the host system via a combined power and I/O line; and a power boost circuit in the target system for enabling a higher voltage target device.
Abstract:
External conditions, e.g., smoke, temperature, humidity, humidity, pressure, flow rate, etc., affects a sensor's characteristics, wherein the sensor provides a current output representative of its characteristics as affected by the external conditions. The current output of the sensor is coupled to a sample and hold capacitor for a precision time period thereby charging the sample and hold capacitor to a voltage proportional to current provided by the sensor over the precision time period. The voltage on the sample and hold capacitor is converted to a digital representation and a determination is made whether the external condition represents an alarm situation, e.g., smoke detected from a fire.
Abstract:
A digitally controlled ramp generator has a constant current source, a first controllable switch coupled between the constant current source and an output node, a capacitor coupled with the output node, a second controllable switch coupled with the output node, a constant current sink coupled with the second controllable switch, and a control unit. The control unit is configured in a first operating mode to select control signals for the first and second controllable switch to generate a rising waveform by charging said capacitor through the first controllable switch and a falling waveform by discharging the capacitor through the second controllable switch wherein the control signals can be selected from the group of a time based control signal and a voltage based control signal. A variety of other control modes may be provided.
Abstract:
A system may have a digital period divider generating an output signal that is proportional to an angle defined by a rotational input signal and an interval measurement unit determining an interval time of an interval defined by succeeding pulses of the input output signal. In an enhancement, the system may also have a missing pulse detector which is operable to compare a current interval with a parameter to determine whether a pulse is missing in the input signal.
Abstract:
A light emitting diode (LED) is driven with a plurality of pulses having controllable pulse widths and positions within clock time periods that provide for both LED light intensity control and digital information communications from a single output node of an integrated circuit (IC) device. The LED light intensity is determined by the duty cycle of the pulses where the human eye integrates these light pulses from the LED into continuous light intensity levels. The digital information contained in the light output from the LED is detected by a photo-detector that converts the light pulses into electric signals that are demodulated and read by a circuit debugger and/or manufacturing test station. The aforementioned operations allow continuous visual display and data transmission using only one output node of the IC device. This is especially advantageous when using low pin count IC devices.
Abstract:
An electronic device including a host system including a source; and a target system operably coupled to the host system via a combined power I/O line; wherein the target system includes a pass transistor and a switching system cooperative to allow the source to charge a power supply capacitor on the target system via the combined power I/O line in a first mode and alternately charge and discharge the power supply capacitor during a communication via the combined power I/O line in a second mode, wherein the alternately charging and discharging is in synchronization with said communication.