摘要:
Formation of an NMOS transistor is disclosed, where at least one of carbon, atomic fluorine and molecular fluorine (F2) are combined with implantations of at least one of arsenic, phosphorous and antimony. The dopant combinations can be used in LDD implantations to form source/drain extension regions, as well as in implantations to form halo regions and/or source/drain regions. The combinations of dopants help to reduce sheet resistance and increase carrier mobility, which in turn facilitates device scaling and desired device performance.
摘要翻译:公开了一种NMOS晶体管的形成,其中碳,原子氟和分子氟(F 2 O 2)中的至少一种与砷,磷和锑中的至少一种的注入相结合。 掺杂剂组合可用于LDD注入以形成源极/漏极延伸区域,以及用于形成卤素区域和/或源极/漏极区域的注入。 掺杂剂的组合有助于降低薄层电阻并增加载流子迁移率,这进而有助于器件缩放和期望的器件性能。
摘要:
Formation of an NMOS transistor is disclosed, where at least one of carbon, atomic fluorine and molecular fluorine (F2) are combined with implantations of at least one of arsenic, phosphorous and antimony. The dopant combinations can be used in LDD implantations to form source/drain extension regions, as well as in implantations to form halo regions and/or source/drain regions. The combinations of dopants help to reduce sheet resistance and increase carrier mobility, which in turn facilitates device scaling and desired device performance.
摘要:
Ultra high temperature (UHT) anneals above 1200 C for less than 100 milliseconds for PMOS transistors reduce end of range dislocations, but are incompatible with stress memorization technique (SMT) layers used to enhance NMOS on-state current. This invention reverses the conventional order of forming the NMOS first by forming PSD using carbon co-implants and UHT annealing them before implanting the NSD and depositing the SMT layer. End of range dislocation densities in the PSD space charge region below 100 cm−2 are achieved. Tensile stress in the PMOS from the SMT layer is significantly reduced. The PLDD may also be UHT annealed to reduce end of range dislocations close to the PMOS channel.
摘要:
A method of forming an integrated circuit (IC) including a core and a non-core PMOS transistor includes forming a non-core gate structure including a gate electrode on a gate dielectric and a core gate structure including a gate electrode on a gate dielectric. The gate dielectric for the non-core gate structure is at least 2 Å of equivalent oxide thickness (EOT) thicker as compared to the gate dielectric for the core gate structure. P-type lightly doped drain (PLDD) implantation including boron establishes source/drain extension regions in the substrate. The PLDD implantation includes selective co-implanting of carbon and nitrogen into the source/drain extension region of the non-core gate structure. Source and drain implantation forms source/drain regions for the non-core and core gate structure, wherein the source/drain regions are distanced from the non-core and core gate structures further than their source/drain extension regions. Source/drain annealing is performed after source and drain implantation.
摘要:
Ultra high temperature (UHT) anneals above 1200 C for less than 100 milliseconds for PMOS transistors reduce end of range dislocations, but are incompatible with stress memorization technique (SMT) layers used to enhance NMOS on-state current. This invention reverses the conventional order of forming the NMOS first by forming PSD using carbon co-implants and UHT annealing them before implanting the NSD and depositing the SMT layer. End of range dislocation densities in the PSD space charge region below 100 cm−2 are achieved. Tensile stress in the PMOS from the SMT layer is significantly reduced. The PLDD may also be UHT annealed to reduce end of range dislocations close to the PMOS channel.
摘要:
A method of manufacturing a semiconductor device. The method comprises providing C atoms in a semiconductor substrate. The method also comprises implanting In atoms and p-type dopants into a predefined region of the substrate that is configured to have the carbon atoms. The method further comprises thermally annealing the semiconductor substrate to transform the predefined region into an activated doped region.
摘要:
A method of forming an integrated circuit (IC) having at least one PMOS transistor includes performing PLDD implantation including co-implanting indium, carbon and a halogen, and a boron specie to establish source/drain extension regions in a substrate having a semiconductor surface on either side of a gate structure including a gate electrode on a gate dielectric formed on the semiconductor surface. Source and drain implantation is performed to establish source/drain regions, wherein the source/drain regions are distanced from the gate structure further than the source/drain extension regions. Source/drain annealing is performed after the source and drain implantation. The co-implants can be selectively provided to only core PMOS transistors, and the method can include a ultra high temperature anneal such as a laser anneal after the PLDD implantation.
摘要:
Ultra high temperature (UHT) anneals above 1200 C for less than 100 milliseconds for PMOS transistors reduce end of range dislocations, but are incompatible with stress memorization technique (SMT) layers used to enhance NMOS on-state current. This invention reverses the conventional order of forming the NMOS first by forming PSD using carbon co-implants and UHT annealing them before implanting the NSD and depositing the SMT layer. End of range dislocation densities in the PSD space charge region below 100 cm−2 are achieved. Tensile stress in the PMOS from the SMT layer is significantly reduced. The PLDD may also be UHT annealed to reduce end of range dislocations close to the PMOS channel.
摘要:
A method of forming an integrated circuit (IC) having at least one PMOS transistor includes performing PLDD implantation including co-implanting indium, carbon and a halogen, and a boron specie to establish source/drain extension regions in a substrate having a semiconductor surface on either side of a gate structure including a gate electrode on a gate dielectric formed on the semiconductor surface. Source and drain implantation is performed to establish source/drain regions, wherein the source/drain regions are distanced from the gate structure further than the source/drain extension regions. Source/drain annealing is performed after the source and drain implantation. The co-implants can be selectively provided to only core PMOS transistors, and the method can include a ultra high temperature anneal such as a laser anneal after the PLDD implantation.
摘要:
A method of forming an integrated circuit (IC) including a core and a non-core PMOS transistor includes forming a non-core gate structure including a gate electrode on a gate dielectric and a core gate structure including a gate electrode on a gate dielectric. The gate dielectric for the non-core gate structure is at least 2 Å of equivalent oxide thickness (EOT) thicker as compared to the gate dielectric for the core gate structure. P-type lightly doped drain (PLDD) implantation including boron establishes source/drain extension regions in the substrate. The PLDD implantation includes selective co-implanting of carbon and nitrogen into the source/drain extension region of the non-core gate structure. Source and drain implantation forms source/drain regions for the non-core and core gate structure, wherein the source/drain regions are distanced from the non-core and core gate structures further than their source/drain extension regions. Source/drain annealing is performed after source and drain implantation.