Abstract:
An infrared radiation detection device comprising: a substrate; a matrix of at least one line of elements for detecting said radiation, each comprising a resistive imaging bolometer, said matrix being formed above the substrate; means for reading the bolometers of the matrix, means for measuring the temperature in at least one point of the substrate; and means for correcting the signal formed from each bolometer as a function of the temperature measured in at least one point of the substrate. The correcting means are capable of correcting the signal formed from the imaging bolometer by means of a predetermined physical model of the temperature behaviour of said signal.
Abstract:
The absorbent membrane of the detector is fixed in suspension by at least one thermally insulating support part onto a front face of a substrate comprising at least two electric connection terminals electrically connected to the membrane, for example by means of conducting layers. The support part has at least one base end and a raised zone. The base end is fixed to a top part of a conducting pillar having a base fixedly secured to one of the electric connection terminals. A substantially flat zone of a bottom face of the membrane is directly in contact with the raised zone of the support part. The support part is preferably formed by a bridge having a second base end fixed to a top part of a second pillar, the raised zone being formed by a flat middle part of the bridge.
Abstract:
A method of manufacturing elements of floating rigid microstructures and a device equipped with such elements.This method of manufacturing at least one element of a microstructure (104, 116) in a substrate including a stacking of a support layer (100), a layer (102) of sacrificial material and a structure layer (104) comprises the following steps:a) etching in the substrate a relief structure (108) with lateral sides (110a, 110b)b) formation of a so-called rigidity lining (116) on the lateral sides (110a, 110b),c) removal of the sacrificial material from the relief structure (108) in order to release the floating microstructure.
Abstract:
A device for detecting infrared radiation comprising an array of bolometers for detecting radiation; and in order to read each bolometer, a signal shaping circuitry comprising: a circuitry capable of biasing the bolometer at a predetermined voltage in order to make current flow therethrough; a circuitry capable of generating a common-mode current; and a circuitry capable of integrating the difference between the current that flows through the bolometer and the common-mode current. According to the invention, the device comprises a circuitry capable of injecting current into each bolometer in order to shift its resistance by a predetermined quantity that depends on its offset, current injection being performed prior to readout biasing of the bolometer and the shift being performed according to the direction in which the bolometer's resistance varies as a function of temperature. In addition, correction circuitry is capable of shifting the resistances of bolometers towards a common value.
Abstract:
A detector for detecting electromagnetic radiation includes a substrate and at least one microstructure including a radiation-sensitive membrane extending substantially opposite and away from the substrate. The membrane is mechanically attached to at least two longilinear, collinear retention elements, at least one of which is mechanically connected to the substrate by an intermediate post. The membrane is in electrical continuity with the substrate. At least two collinear legs are attached to each other at the level of their ends which are attached to the membrane by a mechanical connector which is substantially co-planar with the legs and membrane. The other end of at least one of the legs is integral with a rigid cross piece which is substantially co-planar with the legs and extends substantially at right angles relative to the main dimension of the legs. The cross piece is integral with the post which is integral with the substrate.
Abstract:
A device for detecting infrared radiation including a resistive imaging bolometer intended to be electrically connected to a circuit for measuring a resistance of the imagine bolometer, whereby the device initially controls and adjusts the resistance of the imaging bolometer by injecting current into the imaging bolometer.
Abstract:
The invention relates to a device for detecting an electromagnetic radiation comprising a resistive imaging bolometer sensitive to the electromagnetic radiation to be detected, intended to be connected electrically to a signal shaping circuit, and a resistive common mode rejection bolometer that is associated electrically with the imaging bolometer, so that the current flowing through the common mode rejection bolometer is subtracted from the current flowing through the imaging bolometer, wherein it comprises means for controlling the resistance of the common mode rejection bolometer by injecting current therein.
Abstract:
An absorbent membrane (1) is fixed in suspension onto a front face of a substrate (2), in a direction substantially parallel to the substrate (2), by at least one alveolate structure thermally insulating the membrane from the substrate (2) and arranged in a plane substantially perpendicular to the substrate (2). The detector can comprise arms (3) fixedly secured to the absorbent membrane (1). The alveolate structures can be respectively arranged between one of the arms (3) and the substrate (2). The alveolate structure can be formed by a plurality of superposed thin layers (6) separated by spacers (7) or by superposed rows of arcades formed by thin layers. The alveolate structure can comprise a porous pad.
Abstract:
An absorbent membrane (1) is fixed in suspension onto a front face of a substrate (2), in a direction substantially parallel to the substrate (2), by at least one alveolate structure thermally insulating the membrane from the substrate (2) and arranged in a plane substantially perpendicular to the substrate (2). The detector can comprise arms (3) fixedly secured to the absorbent membrane (1). The alveolate structures can be respectively arranged between one of the arms (3) and the substrate (2). The alveolate structure can be formed by a plurality of superposed thin layers (6) separated by spacers (7) or by superposed rows of arcades formed by thin layers. The alveolate structure can comprise a porous pad.
Abstract:
Device for safety injection on a pressurized-water nuclear reactor, including at least two separate injection trains each consisting of at least one set of means (60, 61, 62) for pumping water from a reservoir (58, 59) arranged outside the safety enclosure, and a main injection pipe (64, 65) connected to a distributor drum (70, 70') for the distribution of the water into each of the cold arms of the primary circuit. From each of the main pipes (64, 65) there is tapped off outside the enclosure an auxiliary pipe (84, 85) in which is located a block valve (96, 97). The auxiliary pipes (84, 85) include a branching-off (86, 87, 88, 89) for placing the auxiliary pipe (84, 85) into communication firstly with a cold arm (52, 53, 54, 55) and secondly with a hot arm (56, 56'). The invention is applicable in the event of leakage in the primary circuit of a pressurized-water nuclear reactor.