Abstract:
A memory array having memory cells and methods of forming the same. The memory array may have a buried digit line formed in a first horizontal planar volume, a word line formed in a second horizontal planar volume above the first horizontal planar volume and storage devices formed on top of the vertical access devices, such as finFETs, in a third horizontal planar volume above the second horizontal planar volume. The memory array may have a 4F2 architecture, wherein each memory cell includes two vertical access devices, each coupled to a single storage device.
Abstract:
Fin-FET (fin field-effect transistor) devices and methods of fabrication are disclosed. The fin-FET devices include dual fin structures that may form a channel region between a source region and a drain region. In some embodiments, the dual fin structures are formed by forming shallow trench isolation structures, using a pair of shallow trench isolation (STI) structures as a mask to define a recess in a portion of a substrate between the pair of STI structures, and recessing the pair of STI structures so that the resulting dual fin structures protrude from an active surface of the substrate. The dual fin structures may be used to form single-gate, double-gate, or triple-gate fin-FET devices. Electronic systems including such fin-FET devices are also disclosed.
Abstract:
Fin-FET (fin field-effect transistor) devices and methods of fabrication are disclosed. The fin-FET devices include dual fin structures that may form a channel region between a source region and a drain region. In some embodiments, the dual fin structures are formed by forming shallow trench isolation structures, using a pair of shallow trench isolation (STI) structures as a mask to define a recess in a portion of a substrate between the pair of STI structures, and recessing the pair of STI structures so that the resulting dual fin structures protrude from an active surface of the substrate. The dual fin structures may be used to form single-gate, double-gate, or triple-gate fin-FET devices. Electronic systems including such fin-FET devices are also disclosed.
Abstract:
A method is disclosed for forming a memory device having buried access lines (e.g., wordlines) and buried data/sense lines (e.g., digitlines) disposed below vertical cell contacts. The buried wordlines may be formed trenches in a substrate extending in a first direction, and the buried digitlines may be formed from trenches in a substrate extending in a second direction perpendicular to the first direction. The buried digitlines may be coupled to a silicon sidewall by a digitline contact disposed between the digitlines and the silicon substrate.
Abstract:
A memory array having memory cells and methods of forming the same. The memory array may have a buried digit line formed in a first horizontal planar volume, a word line formed in a second horizontal planar volume above the first horizontal planar volume and storage devices formed on top of the vertical access devices, such as finFETs, in a third horizontal planar volume above the second horizontal planar volume. The memory array may have a 4F2 architecture, wherein each memory cell includes two vertical access devices, each coupled to a single storage device.