Abstract:
Semiconductor growth substrates and associated systems and methods for die singulation are disclosed. A representative method for manufacturing semiconductor devices includes forming spaced-apart structures at a dicing street located between neighboring device growth regions of a substrate material. The method can further include epitaxially growing a semiconductor material by adding a first portion of semiconductor material to the device growth regions and adding a second portion of semiconductor material to the structures. The method can still further include forming semiconductor devices at the device growth regions, and separating the semiconductor devices from each other at the dicing street by removing the spaced-apart structures and the underlying substrate material at the dicing street.
Abstract:
A method of forming a plurality of spaced features includes forming sacrificial hardmask material over underlying material. The sacrificial hardmask material has at least two layers of different composition. Portions of the sacrificial hardmask material are removed to form a mask over the underlying material. Individual features of the mask have at least two layers of different composition, with one of the layers of each of the individual features having a tensile intrinsic stress of at least 400.0 MPa. The individual features have a total tensile intrinsic stress greater than 0.0 MPa. The mask is used while etching into the underlying material to form a plurality of spaced features comprising the underlying material. Other implementations are disclosed.
Abstract:
Semiconductor growth substrates and associated systems and methods for die singulation are disclosed. A representative method for manufacturing semiconductor devices includes forming spaced-apart structures at a dicing street located between neighboring device growth regions of a substrate material. The method can further include epitaxially growing a semiconductor material by adding a first portion of semiconductor material to the device growth regions and adding a second portion of semiconductor material to the structures. The method can still further include forming semiconductor devices at the device growth regions, and separating the semiconductor devices from each other at the dicing street by removing the spaced-apart structures and the underlying substrate material at the dicing street.
Abstract:
A method of forming a plurality of spaced features includes forming sacrificial hardmask material over underlying material. The sacrificial hardmask material has at least two layers of different composition. Portions of the sacrificial hardmask material are removed to form a mask over the underlying material. Individual features of the mask have at least two layers of different composition, with one of the layers of each of the individual features having a tensile intrinsic stress of at least 400.0 MPa. The individual features have a total tensile intrinsic stress greater than 0.0 MPa. The mask is used while etching into the underlying material to form a plurality of spaced features comprising the underlying material. Other implementations are disclosed.