Abstract:
An RFID chip package includes an RFID chip including a voltage booster circuit and processing an RF signal in a UHF band and a power supply circuit connected to the RFID chip and including at least one inductance element. A reactance component of an input/output impedance at an antenna-connecting input/output terminal of the power supply circuit is substantially 0Ω.
Abstract:
A communication terminal device includes a printed wiring board disposed in a casing, a feed pattern provided on a main surface of the printed wiring board, a radiation plate including a substantially planar radiation portion substantially perpendicular to the main surface of the printed wiring board and a lead portion connecting the radiation portion to the feed pattern, and a component mounted on the main surface of the printed wiring board to overlap the lead portion when the main surface of the printed wiring board is viewed from above, the component including a conductive material, a magnetic material and/or a dielectric material. The radiation portion is connected to the lead portion at a side spaced away from the main surface of the printed wiring board, and an area of the lead portion is located at a predetermined distance from the main surface of the printed wiring board.
Abstract:
A transmission line portion of a flat cable that is bent at a position along the longitudinal direction includes a dielectric element body, a first ground conductor, and a second ground conductor. The dielectric element body includes a signal conductor at the middle position of the thickness direction. The first ground conductor includes elongated conductors and bridge conductors. The elongated conductors are spaced in the width direction of the dielectric element body, and extend in the longitudinal direction. The bridge conductors connect the elongated conductors at spacings along the longitudinal direction. The spacing of bridge conductors across the bending point in a bent portion is smaller than the spacing of adjacent bridge conductors located in a straight portion.
Abstract:
A wireless communication device includes a wireless IC device, a dielectric substrate, and a metal plate. A radiation conductor coupled to the wireless IC device is provided on the front surface of the dielectric substrate, and a ground conductor connected to the radiation conductor through an interlayer connection conductor is provided on a back surface. The dielectric substrate is fixed to the metal plate via an insulating adhesive, and is crimped by a conductive member. The front and back surfaces of the metal plate are electrically connected to each other by the conductive member, and when a high-frequency signal is supplied from the wireless IC device, a high-frequency signal current on the front surface side of the metal plate is conducted to the back surface side of the metal plate through a surface boundary portion between the conductive member and the metal plate, and radiated as a high-frequency signal.
Abstract:
An antenna device includes an impedance-matching switching circuit connected to a feeding circuit, and a radiating element. The impedance-matching switching circuit matches the impedance of the radiating element as a second high frequency circuit element and the impedance of the feeding circuit as a first high frequency circuit element. The impedance-matching switching circuit includes a transformer matching circuit and a series active circuit. The transformer matching circuit matches the real parts of the impedance and matches the imaginary parts of the impedance in the series active circuit. Thus, impedance matching is performed over a wide frequency band at a point at which high frequency circuits or elements having different impedances are connected to each other.