Abstract:
There is provided a method performed by a transmitter in a multi-user communication system. The method includes transmitting a first part of a codeword to a plurality of receivers over a communication channel in a transmission. The method further includes receiving feedback on the transmission of the first part of the codeword. The method also includes providing an artificial channel having channel parameters adjustable responsive to the received feedback. The method additionally includes virtually feeding the artificial channel with the first part of the codeword to generate artificial channel output data. The method further includes encoding a second part of the codeword for transmission to the plurality of receivers over the communication channel responsive to the artificial channel output data. The method also includes transmitting the encoded signals to the plurality of receivers over the communication channel.
Abstract:
A method implemented in an apparatus used in a radio access network (RAN) sharing system including a plurality of basestations is disclosed. The method includes estimating resource requirement or demand of one or more entities in each base station according to feedback from the plurality of basestations, computing resource allocation for said one or more entities, and enforcing the computed resource allocation using basestation-level virtualization. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a base station used in a wireless communications system is disclosed. The method comprises transmitting an index indicating data stream parameters, and transmitting an indication of the number of transmit antennas at the base station, wherein the data stream parameters for 8 transmit antennas are indicated by the index according to a first table, and wherein the data stream parameters for 4 transmit antennas are indicated by the index according to a second table. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a user equipment used in a multi-user multiple input multiple output (MU-MIMO) wireless communications system is disclosed. The method includes receiving from a base station an indication of a first modulation type for the user equipment, receiving a first data signal for the user equipment, receiving a second data signal for a co-scheduled user equipment, where a second modulation type for the co-scheduled user equipment is unknown to the user equipment, and deciding the second modulation type. Other methods, systems, and apparatuses also are disclosed.
Abstract:
Systems and methods for system for channel access adaptation are disclosed. One system includes a plurality of remote antennas and a plurality of access points. The remote antennas transmit data to receivers and obtain channel state information. Additionally, each access point controls a different cluster of the remote antennas and receives the respective channel state information from the remote antennas of the cluster. Further, each access point is configured to, independently from other access points, adapt channel allocations to the remote antennas of the respective cluster based on a tracking of sums of collision loss probabilities. Each given sum is determined by the access point for a different given set of a plurality of sets of cooperating remote antennas in the respective cluster, where each constituent collision loss probability in the given sum is determined by the access point from a different interference clique to which the given set belongs.
Abstract:
Systems and methods for data transmission include categorizing users into one of a plurality of profiles using a processor based on device and channel characteristics. Each of the plurality of profiles is mapped to one of a plurality of transmission schemes. Data is combined for a plurality of users categorized with different profiles for data transmission.
Abstract:
Systems and methods for system for channel access adaptation are disclosed. One system includes a plurality of remote antennas and a plurality of access points. The remote antennas transmit data to receivers and obtain channel state information. Additionally, each access point controls a different cluster of the remote antennas and receives the respective channel state information from the remote antennas of the cluster. Further, each access point is configured to, independently from other access points, adapt channel allocations to the remote antennas of the respective cluster based on a tracking of sums of collision loss probabilities. Each given sum is determined by the access point for a different given set of a plurality of sets of cooperating remote antennas in the respective cluster, where each constituent collision loss probability in the given sum is determined by the access point from a different interference clique to which the given set belongs.
Abstract:
In a multiple-input multiple-output (MIMO) wireless system supporting Coordinated Multi-Point (CoMP) transmission and having a first base station, a second base station, and a user equipment, a communications method implemented in the first base station is disclosed. In an aspect, the communications method includes exchanging, with the second base station through local information exchange, first information about a first channel between the first base station and the user equipment and second information about a second channel between the second base station and the user equipment, and computing at least one of a precoding matrix, a receiver filter, and a projection matrix, wherein the user equipment estimates the first information and the second information, and shares the first information and the second information with the first base station. Other apparatuses and some methods for wireless communications also are disclosed.
Abstract:
A method implemented in a user equipment used in a wireless communications system is disclosed. The method comprises receiving from a base station an indication of a first modulation type for the user equipment, receiving from the base station a first data signal for the user equipment, receiving from the base station an indication of a minimum time-frequency unit that is assigned to another user equipment, receiving a second data signal for said another user equipment, where a second modulation type for said another user equipment is unknown to the user equipment, and cancelling and suppressing interference by using the minimum time-frequency unit. Other methods, systems, and apparatuses also are disclosed.
Abstract:
Systems and methods for data transmission include categorizing users into one of a plurality of profiles using a processor based on device and channel characteristics. Each of the plurality of profiles is mapped to one of a plurality of transmission schemes. Data is combined for a plurality of users categorized with different profiles for data transmission.