Abstract:
A resonator has a main resonator body and a secondary resonator structure. The resonator body has a desired mode of vibration of the resonator alone, and a parasitic mode of vibration, wherein the parasitic mode comprises vibration of the resonator body and the secondary resonator structure as a composite body. In this way, unwanted vibrational modes are quenched by the second suspended body.
Abstract:
Consistent with an example embodiment, a user (touch screen) interface has haptic feedback. The user interface comprises, a substrate, a transparent bottom electrode on top of the substrate, a transparent wrinkling layer on top of the transparent bottom electrode, a transparent top electrode on top of the transparent wrinkling layer; and a transparent protective surface on top of the transparent top electrode. The transparent wrinkling layer changes from a smooth surface to a roughened surface upon application of a voltage between the top electrode and the bottom electrode; the voltage generates an electrostatic force mutually attracting the top and bottom electrodes to exert a compressive force upon the transparent wrinkling layer sufficient to generate a degree of surface wrinkling that is perceptible to the touch.
Abstract:
A method and apparatus for measuring the rate of flow of an ion-containing fluid in a channel are disclosed herein. The apparatus includes a captive sensor operable to detect changes in capacitance value due to the deflection of the ions in the fluid by a magnetic field, and a processor operable to determine a flow speed of fluid from the detected change in capacitance value and a predetermined value of magnetic field strength. Such apparatus may be implemented using CMOS technology. The apparatus may operate in a magnetic field generated by a permanent magnet and measure the flow reliably.
Abstract:
Consistent with an example embodiment, a user (touch screen) interface has haptic feedback. The user interface comprises, a substrate, a transparent bottom electrode on top of the substrate, a transparent wrinkling layer on top of the transparent bottom electrode, a transparent top electrode on top of the transparent wrinkling layer; and a transparent protective surface on top of the transparent top electrode. The transparent wrinkling layer changes from a smooth surface to a roughened surface upon application of a voltage between the top electrode and the bottom electrode; the voltage generates an electrostatic force mutually attracting the top and bottom electrodes to exert a compressive force upon the transparent wrinkling layer sufficient to generate a degree of surface wrinkling that is perceptible to the touch.
Abstract:
One example discloses an acoustic pairing device, comprising: an acoustic processor configured to receive a first acoustic signal and a second acoustic signal; a signal comparison module configured to identify a propagation delay or amplitude difference between the first and second acoustic signals; and a pairing module configured to output a pairing signal if the propagation delay or amplitude difference is between a first value and a second value. Another example discloses a method for acoustic pairing between a first device and a second device, executed by a computer programmed with non-transient executable instructions, comprising: receiving a propagation delay or amplitude difference between a first acoustic signal and a second acoustic signal; pairing the first and second devices if the propagation delay or amplitude difference is between a first value and a second value.
Abstract:
A resonator has a main resonator body and a secondary resonator structure. The resonator body has a desired mode of vibration of the resonator alone, and a parasitic mode of vibration, wherein the parasitic mode comprises vibration of the resonator body and the secondary resonator structure as a composite body. In this way, unwanted vibrational modes are quenched by the second suspended body.
Abstract:
Flow sensors for measuring the flow of an ion-containing fluid may be implemented using mechanical or electrical techniques. Mechanical flow sensors are have moving parts and therefore may be unreliable after some time and are expensive to manufacture. Hall-effect type flow sensors typically require a reversible magnetic field to compensate for electrochemical effects. A flow meter including such a sensor uses an electromagnet. A flow sensor (100) is described using a capacitive sensor (10) and processor (12) to determine the flow rate from a change in capacitance and a magnetic field. Such a flow sensor may be implemented using CMOS technology. The flow sensor may operate in a magnetic field generated by a permanent magnet and measure the flow reliably.
Abstract:
One example discloses an acoustic pairing device, comprising: an acoustic processor configured to receive a first acoustic signal and a second acoustic signal; a signal comparison module configured to identify a propagation delay or amplitude difference between the first and second acoustic signals; and a pairing module configured to output a pairing signal if the propagation delay or amplitude difference is between a first value and a second value. Another example discloses a method for acoustic pairing between a first device and a second device, executed by a computer programmed with non-transient executable instructions, comprising: receiving a propagation delay or amplitude difference between a first acoustic signal and a second acoustic signal; pairing the first and second devices if the propagation delay or amplitude difference is between a first value and a second value.
Abstract:
Various exemplary embodiments relate to a pressure sensor including a pressure sensitive membrane suspended over a cavity, wherein the membrane is secured by a set of anchors to a substrate; and a getter material embedded in the membrane, wherein the surface of the getter is in contact with any gas within the cavity, and wherein two end points of the getter material are attached through the substrate by anchors capable of conducting through the substrate an electrical current through the getter material.