摘要:
This invention relates to regeneration of a filter (41) which traps particulate matter contained in the exhaust gas of a diesel engine (1) for a vehicle. A programmable controller (31) performs filter regeneration appropriately in accordance with the running pattern of the vehicle by calculating a first parameter indicating the frequency with which the diesel engine (1) performs an idling operation over a predetermined time period up to the present (S7), calculating a second parameter indicating the temperature environment of the filter (41) over a predetermined time period up to the present (S3), and determining whether or not the filter (41) can be regenerated completely on the basis of the first parameter and second parameter (S13).
摘要:
A filter differential pressure, which is the difference between the inlet pressure and the outlet pressure of a DPM filter (11), is determined, and switching is performed in accordance with the regeneration condition of the DPM filter (11) between a first trapped DPM amount calculation process for estimating the trapped DPM amount after complete regeneration, in which all of the DPM trapped in the DPM filter (11) is burned, and a second trapped DPM amount calculation process for estimating the trapped DPM amount when a part of the DPM trapped in the DPM filter (11) has been burned away. The trapped DPM amount in the DPM filter (11) is estimated on the basis of the filter differential pressure using one of the first and second trapped DPM amount calculation processes.
摘要:
A diesel particulate filter (41) traps particulate matter contained in the exhaust gas of a diesel engine (1) for a vehicle. The filter (41) is regenerated by raising the exhaust gas temperature so that the trapped particulate matter burns. A controller (31) calculates a particulate matter combustion amount PMr during regeneration, and in accordance with increases in the combustion amount PMr, raises the oxygen concentration of the exhaust gas by operating an intake throttle (42) and/or a variable nozzle (24) of a turbocharger (21). As a result, the filter (41) is held at an optimum temperature for regeneration regardless of the residual particulate matter amount, and hence the time required for regeneration can be shortened without damaging the heat resistance performance of the filter (41).
摘要:
A diesel engine (1) comprises an exhaust passage (3), and a DPM filter (4) provided on the exhaust passage (3), which traps diesel particulate matter (DPM) contained in the exhaust gas such that the diesel particulate matter accumulates therein. An engine controller (11) starts regeneration processing of the DPM filter (4) by raising the exhaust gas temperature when a regeneration timing of the DPM filter (4) is reached, sets a target exhaust gas temperature during regeneration processing to ensure that the temperature of the DPM filter (4) does not exceed an upper temperature limit of the DPM filter (4), even when the temperature of the DPM filter (4) is raised due to the engine (1) entering an idling condition during the regeneration processing, and controls the exhaust gas temperature to the target exhaust gas temperature.
摘要:
A diesel particulate filter (41) which traps particulate matter contained in the exhaust gas of a diesel engine (1) comprises an oxidation catalyst (41A) which exhibits a temperature-raising effect during regeneration of the filter (41). A controller (31) calculates the amount of particulate matter trapped in the filter (41) at the start of regeneration as a first amount, and calculates the amount of particulate matter burned during regeneration of the filter (41) as a second amount (S3, S10, S18). A deterioration factor d of the oxidation catalyst is calculated from the ratio of the second amount and first amount, and a target temperature for the next regeneration of the filter is determined on the basis of this deterioration factor d. Thus deterioration of the oxidation catalyst (41A) is compensated for, and an optimum temperature environment for regenerating the filter (41) is realized.
摘要:
A regeneration control device, which regenerates a filter (13) for trapping particulate matter in exhaust gas from an engine (1), is disclosed. The filter (13) supports a catalyst which oxidizes unburnt components in the exhaust gas. The regeneration control device has a temperature sensor (14) which detects a filter inlet exhaust gas temperature (Tdpf_in_mea); and a microcomputer (22). The microcomputer (22) is programmed to compute a filter outlet exhaust gas temperature (Tdpf_out_cal), not including temperature rise due to oxidation reaction of unburnt components based on the detected inlet exhaust gas temperature; compute the filter bed temperature (Tbed_cal) based on the detected inlet exhaust gas temperature and computed outlet exhaust gas temperature; compute a temperature rise (ΔThc1) due to oxidation reaction of unburnt components; correct the bed temperature based on the computed temperature rise (ΔThc1).
摘要:
A diesel engine (1) comprises an exhaust passage (3), and a DPM filter (4) provided on the exhaust passage (3), which traps diesel particulate matter (DPM) contained in the exhaust gas such that the diesel particulate matter accumulates therein. An engine controller (11) starts regeneration processing of the DPM filter (4) by raising the exhaust gas temperature when a regeneration timing of the DPM filter (4) is reached, sets a target exhaust gas temperature during regeneration processing to ensure that the temperature of the DPM filter (4) does not exceed an upper temperature limit of the DPM filter (4), even when the temperature of the DPM filter (4) is raised due to the engine (1) entering an idling condition during the regeneration processing, and controls the exhaust gas temperature to the target exhaust gas temperature.
摘要:
To regenerate a diesel particulate filter (10) which traps particulate matter contained in the exhaust gas of a diesel engine (20), a controller (16) raises the temperature of the exhaust gas through fuel injection control of a fuel injector (23), and thus burns the particulate matter trapped in the filter (10). The controller (16) cumulatively calculates the time during which the temperature of the filter (10) exceeds a target temperature as an effective regeneration time. By estimating the amount of particulate matter remaining in the filter (10) on the basis of the effective regeneration time, the controller (16) estimates the amount of remaining particulate matter with a high degree of precision and without consuming energy, whereupon regeneration of the filter (10) through fuel injection control ends.
摘要:
A regeneration control device which regenerates a filter (13) by increasing an exhaust gas temperature to burn exhaust gas particulates trapped in the filter, is disclosed. The filter (13) traps particulate matter in exhaust gas from an engine (1). The regeneration control device suppresses fuel cost-performance impairment due to filter regeneration. The regeneration control device has a load detection sensor (31) which detects an engine load and a microcomputer-based controller (22). The controller is programmed to perform engine control to adjust the exhaust gas temperature for regeneration of the filter (13), when a computed trapped amount is equal to or more than the first reference value (A) and less than the second reference value (B), and the detected load (Vsp) is equal to or more than a reference load (Vo); and perform engine control to adjust the exhaust gas temperature for regeneration of the filter (13) regardless of the detected load (Vsp), when the computed trapped amount is equal to or more than the second reference value (B).
摘要:
A diesel particulate filter (41) which traps particulate matter contained in the exhaust gas of a diesel engine (1) comprises an oxidation catalyst (41A) which exhibits a temperature-raising effect during regeneration of the filter (41). A controller (31) calculates the amount of particulate matter trapped in the filter (41) at the start of regeneration as a first amount, and calculates the amount of particulate matter burned during regeneration of the filter (41) as a second amount (S3, S10, S18). A deterioration factor d of the oxidation catalyst is calculated from the ratio of the second amount and first amount, and a target temperature for the next regeneration of the filter is determined on the basis of this deterioration factor d. Thus deterioration of the oxidation catalyst (41A) is compensated for, and an optimum temperature environment for regenerating the filter (41) is realized.