Abstract:
A novel method to prepare high-enthalpy biofuels has been developed based on a new chemical pattern which has never been used before in the synthesis of renewable fuels. These biofuels are based on natural oleaginous feedstock, rendering low viscosity liquids with broad liquid range and enthalpy levels much superior to those found in common biodiesel, meaning ethyl or methyl fatty esters. As in the case of biodiesel, these new biofuels contain zero sulfur, causing none of the major pollution associated with commercial diesel. High enthalpy biofuels are aliphatic nitrile compounds, containing a single nitrogen substituent, are chemically aprotic, even though their high degree of polarity is reflected in its high cetane index and solubility parameter. The present invention includes fuels associated with diesel, as well as other high-enthalpy fractions, which according to their boiling point, correspond to naphtha in the lower scale, and bunker in the upper scale.
Abstract:
A novel method to prepare high-enthalpy biofuels has been developed based on a new chemical pattern which has never been used before in the synthesis of renewable fuels. These biofuels are based on natural oleaginous feedstock, rendering low viscosity liquids with broad liquid range and enthalpy levels much superior to those found in common biodiesel, meaning ethyl or methyl fatty esters. As in the case of biodiesel, these new biofuels contain zero sulfur, causing none of the major pollution associated with commercial diesel. High enthalpy biofuels are aliphatic nitrile compounds, containing a single nitrogen substituent, are chemically aprotic, even though their high degree of polarity is reflected in its high cetane index and solubility parameter. The present invention includes fuels associated with diesel, as well as other high-enthalpy fractions, which according to their boiling point, correspond to naphtha in the lower scale, and bunker in the upper scale.
Abstract:
This invention discloses a unique catalyst for the simultaneous sterospecific preparation of high and low molecular weight isotactic poly 1,2-butylene oxide and a method of preparation of that catalyst from butylene oxide monomer and iron chloride.
Abstract:
Disclosed are novel crosslinked polymers derived from methylol phenols and maleic acid species, and methods of synthesizing these macromolecules. Polyesters and chromandicarboxylic groups are the dominant linkages in the structure of general formula: ##STR1## R is H or a spacing group between aromatics, R.sub.1 is an aldehyde substituent, R.sub.2 a spacing group belonging to multihidric alcohols, a maleyl grouping, and n a whole number either 0 or 1.
Abstract:
Novel polymers of general formula: ##STR1## wherein where n is a whole number from 2 to 10; R is a spacing group comprising (a) at least one of m methylene units where m is a whole number from 1 to 20, m' methine units where m' is a whole number from 0 to 20, a mixture of m methylene units and m' methine units where m+m'.ltoreq.20, and units of formula --(CH.sub.2 -CHX-O).sub.m" --, where m" is a whole number from 0 to 200 and X is H, CH.sub.3 or C.sub.2 H.sub.5, or (b) an aromatic ring having one, two or three members; R' is H, an alkyl group having no more than 20 carbon atoms, an aryl group having no more than three rings, or a combination thereof; R" is a group containing at least two active hydrogen atoms and having at least two but no more than 20 carbon atoms; and R'" is a group containing at least two active hydrogen atoms and is selected from the group consisting of alkyl, aryl and mixed alkyl-aryl species having from 1 to 200 carbon atoms; polyalkylene oxides; and urea formaldehyde resin.
Abstract:
Novel polymers of general formula: ##STR1## wherein R is an alkyl or aryl group that contains an active hydrogen atom (as determined by the Zerewitinoff test); A is a spacing group having at least one carbon atom; B is a spacing group having at least two carbon atoms; and R and R' are alkyl or aryl groups. The polymer is synthesized via the Mannich pathway, involving formation of an imine intermediate.
Abstract:
This invention discloses a unique catalyst for the simultaneous sterospecific preparation of high and low molecular weight isotactic poly 1,2-butylene oxide and a method of preparation of that catalyst from butylene oxide monomer and iron chloride.