Abstract:
Recharging of a secondary battery within a short time after the battery is fully charged is prevented. A method of achieving this prevention includes: a charging step of charging a secondary battery by external power until a charging amount of the secondary battery becomes equal to a fully charged amount, while stopping a driving component; and a stop continuation step of stopping the charging of the secondary battery by the external power and stopping a driving component in a stop continuation period in which the charging amount of the secondary battery decreases from the fully charged amount to a predetermined charging amount.
Abstract:
First and second conductor layers are formed on a main surface of a base layer. A tapered slot is formed between the first and second conductive layers. A first slit is formed at the first conductor layer, and a second slit is formed at the second conductor layer. Thus, the first conductor layer is divided into a first device connection portion and a first antenna portion, and the second conductor layer is divided into a second device connection portion and a second antenna portion. A semiconductor device is connected to the first and second device connection portions.
Abstract:
A wireless power transmission system includes a power transmission device including a plurality of power transmission portions, and a power receiving object including a power receiving portion capable of receiving an electric power wirelessly transmitted from the power transmission portion. Of the plurality of power transmission portions, a specific power transmission portion transmits the electric power to the power receiving portion.
Abstract:
A variable magnetic field in which a power-supplying coil and a power supplying resonator exist is generated only by the power-supplying coil. Power-supplying coils and each of which generates a variable magnetic field due to the supply of a variable current via a first current path on one coil end a side and a second current path on the other coil end side; resonance capacitors which are provided on the first current path and the second current path; and a power-supplying coil short-circuit mechanism which is able to cause at least one of the power-supplying coils and to function as a power supplying resonator by allowing the end portions and of the first current path and the second current path to short-circuit with each other are provided.
Abstract:
A magnetic field is formed at a predetermined region. A magnetic field formation device configured to generate a variable magnetic field at a predetermined region includes power supplying resonators. All of the power supplying resonators are provided so that coil surfaces oppose the predetermined region, and at least one of the power supplying resonators is provided to have a coil surface direction intersecting with the coil surface direction of the other one of the power supplying resonators.
Abstract:
A wireless power transmission device supplies power by means of a resonance phenomenon, from a power supply module equipped with at least a power-supply resonator to a power-receiving module equipped with at least a power-receiving resonator. For the power-supply resonator and the power-receiving resonator, a value for a transmission characteristic of a power source frequency for power is set so as to have two peak bands, and By setting the power source frequency for the power supplied to the power supply module to the power source frequency band corresponding to one of the two peak bands of the transmission characteristic, magnetic field spaces having a magnetic field strength less than the surrounding magnetic field strength are formed in the area near the power-supply resonator and the power-receiving resonator.
Abstract:
A dielectric film has a main surface and a back surface and is formed of resin. Electrodes that can receive or transmit an electromagnetic wave having a frequency of not less than 0.05 THz and not more than 10 THz in the terahertz band are formed on the main surface of the dielectric film. The electrodes constitute a tapered slot antenna. The dielectric film and the electrodes are formed of a flexible printed circuit board. A semiconductor device that is operable at a frequency in the terahertz band is mounted on the main surface of the dielectric film so as to be electrically connected to the electrodes.
Abstract:
A wired circuit board includes a base insulating layer, and a circuit disposed on a one-side surface in the thickness direction of the base insulating layer. The circuit includes a transmitting and receiving circuit and a component mounting circuit. The transmitting and receiving circuit includes a first wire. The first wire includes a first aspect ratio R1. The component mounting circuit includes a second wire electrically connected to the first wire. The second wire has a second aspect ratio R2 lower than the first aspect ratio R1.
Abstract:
A wireless power transmission system includes a power-supplying device including an electronic oscillator that generates electric power having a frequency of 1 MHz or more and 5 MHz or less, and a power-supplying coil member in which the electric power flows; and a power-receiving device including a power-receiving coil member that is capable of generating electric power based on the magnetic field generating from the power-supplying coil member, wherein the power-receiving coil member is a sheet coil including an insulating layer and a first coil pattern disposed at one side of the insulating layer, the first coil pattern is composed of wires, and the wires are disposed in spaced apart relation from each other with a predetermined space provided therebetween in the radial direction of the first coil pattern.
Abstract:
A base insulating layer is formed on a suspension body. A lead wire for plating and a wiring trace are integrally formed on the base insulating layer. A cover insulating layer is formed on the base insulating layer to cover the lead wire for plating and the wiring trace. A thickness of a portion of the cover insulating layer above a region of the base insulating layer in which the lead wire for plating is formed is set smaller than the thickness of a portion of the cover insulating layer above other regions of the base insulating layer.