Abstract:
To improve the resolution of a stationary region while suppressing artifacts in a moving region, an image processing system includes a misalignment-detecting circuit that detects an amount of misalignment between a plurality of time-series images; a high-resolution combining circuit that, based on the amount of misalignment, combines the plurality of images in a high-resolution space having a higher resolution than the plurality of images to generate a high-resolution combined image; an image-converting circuit that reduces the size of the high-resolution combined image by resampling to generate a converted image; a correlation-calculating circuit that calculates the correlation between a standard image serving as a standard among the plurality of images and the converted image for each region; and an image-correcting circuit that corrects the high-resolution combined image such that the combining ratio of the standard image becomes lower as the correlation calculated by the correlation-calculating circuit becomes higher.
Abstract:
An image processing device includes: a motion-vector computation unit that computes a motion vector between a base image and a reference image; a motion compensation unit that performs a motion compensation to align the reference image with the base image based on the motion vector; a contrast computation unit that computes a contrast value of a target pixel of the base image based on one of the base image and the reference image; a synthetic ratio computation unit that computes a synthetic ratio between: the target pixel for a synthesis processing in the base image; and a corresponding pixel corresponding to the target pixel in the reference image processed by the motion compensation, in response to the contrast value of the target pixel; and a synthesizing unit that synthesizes the target pixel of the base image and the corresponding pixel of the reference image based on the synthetic ratio.
Abstract:
An image-processing device includes a high-resolution combining portion that generates a combined image by combining a standard image and at least one reference image, which are acquired by capturing images of a subject in time series by using an imaging element in which multiple types of color filters are arrayed in individual pixels, in a high-resolution space where the resolution is greater than those of the standard image and the reference images. The image-processing device also includes a position-displacement-distribution calculating portion that calculates a distribution of position displacements between two comparative images that are individually formed of pixels corresponding to the different types of color filters in the generated combined image, a correlation-level calculating portion that calculates, for individual pixels, correlation levels between the two comparative images based on the calculated distribution, and an image correcting portion that corrects the combined image based on the calculated correlation levels.
Abstract:
An image processing device combines a plurality of time-series images to generate a composite image with a higher resolution than a resolution of the plurality of images. The image processing device includes a processor that includes hardware and that is configured to: detect depth information of at least one image of the plurality of images; and set the number of images to be combined for generating the composite image on the basis of the detected depth information. The depth information indicates a depth of a captured scene of the at least one image. The processor is configured to reduce the number of images as the depth of the captured scene increases.
Abstract:
An image acquisition apparatus includes an optical system including a lens and forming a subject image; an image acquisition device having an image acquisition surface on which the subject image is formed and acquiring a plurality of images; a shifting mechanism causing the device and system to relatively shift in a direction parallel to the surface; and a processor configured to: calculate a movement amount of the subject image on the surface; calculate a relative shift amount of the device and system on the basis of the calculated movement amount; and cause the device and system to relatively shift, between acquisitions of the plurality of images, by the calculated shift amount. The device acquires a plurality of pre-images before acquiring the plurality of images, and the processor is configured to calculate the movement amount of the subject image from a movement amount of the subject between the plurality of pre-images.
Abstract:
An image processing device includes one or more processors configured to: generate a high-resolution combined image by aligning the plurality of images with each other in a high-resolution image space based on an amount of displacement between the plurality of images, and combining the plurality of images; generate at least two low-resolution combined images by generating at least two groups each composed of at least two images by dividing the plurality of images in the time direction, aligning the at least two images in each of the groups with each other in a low-resolution image space based on the amount of displacement, and combining the at least two images through weighted addition; calculate, in each region, a feature quantity pertaining to a correlation between the generated at least two low-resolution combined images; and correct the high-resolution combined image based on the calculated feature quantity.
Abstract:
An image processing device includes a processor configured to: extract pixel blocks; detect pixels having a maximum value and a minimum value in each of the pixel blocks; calculate reference value candidates from the maximum and the minimum values; calculate an absolute difference value relative to each of the maximum value, the minimum value, and the reference value candidates; divide each of the pixel blocks into subblocks; select, as a reference value from among the reference value candidates in each of the subblocks, a reference value candidate close to the pixel values in which the pixels included in each of the subblocks are distributed; extract a closest difference value, the minimum value, and the reference value; quantize each of the closest difference values into a quantization value by using the difference value that is the largest from among the closest difference values; and code the quantization value.
Abstract:
An image-processor includes: a discrete-motion-vector calculator calculating motion vectors of individual measurement regions and confidences thereof based on a standard image and a reference image or a combined image generated based on the reference image; a global-vector calculator separately calculating, based on the motion vectors and the confidences thereof, a global vector of the standard image, a confidence thereof, a local vector of a processing target region in the standard image, and a confidence of the local vector; a local-vector interpolator; a local-vector-confidence interpolator; a motion-vector selector selecting the local vector or the global vector based on at least one of the local vector, the confidence thereof, the global vector, and the confidence thereof; a motion-compensated-image generator generating, based on the selected vector, a motion-compensated image of the reference image or the combined image; and a blender weighted adding the processing target region and the motion-compensated image.
Abstract:
A solid-state imaging device includes a pixel signal processing unit including a plurality of pixels; a plurality of first charge storage circuits which are configured to hold the first signal charges generated by the photoelectric conversion units and output first signal voltages as first pixel signals; and a plurality of second charge storage circuits which are configured to hold second signal charges and output second signal voltages, and a differential analog/digital conversion unit includes: a plurality of first differential calculation units; a plurality of first analog/digital conversion units which are configured to perform analog/digital conversion to the first differential pixel signals and output digital values indicating magnitudes of the first differential pixel signals; and a plurality of second analog/digital conversion units which are configured to perform analog/digital conversion to the second pixel signal and output digital values indicating magnitudes of the second pixel signals.
Abstract:
A solid-state imaging device includes a pixel signal processing unit including a plurality of pixels; a plurality of first charge storage circuits which are configured to hold the first signal charges generated by the photoelectric conversion units and output first signal voltages as first pixel signals; and a plurality of second charge storage circuits which are configured to hold second signal charges and output second signal voltages, and a differential analog/digital conversion unit includes: a plurality of first differential calculation units; a plurality of first analog/digital conversion units which are configured to perform analog/digital conversion to the first differential pixel signals and output digital values indicating magnitudes of the first differential pixel signals; and a plurality of second analog/digital conversion units which are configured to perform analog/digital conversion to the second pixel signal and output digital values indicating magnitudes of the second pixel signals.