摘要:
The method of electrophotographically manufacturing a screen assembly on an interior surface of a faceplate panel for a color CRT, according to the present invention includes the step of forming a photoreceptor by sequentially coating the surface of the panel with a conductive solution to form a volatilizable conductive layer and then overcoating the conductive layer with an organic photoconductive solution comprising a suitable resin, an electron donor material, an electron acceptor material, a surfactant and an organic solvent to form a volatilizable photoconductive layer. The photoconductive layer of the photoreceptor is resistant to cracking during filming, displays increased phosphor adherence during fixing, can be substantially completely baked-out, and has substantially no spectral sensitivity beyond 550 nm so that the screening process may be carried out in yellow light, rather than in the dark, in order to provide a safe working environment without deleterious effects on the panels coated with the novel photoconductive layer.
摘要:
The invention relates to a method of electrophotographically manufacturing a luminescent screen assembly for a color CRT by utilizing materials whose volatilizable constituents are substantially completely baked-out in the same step in which the faceplate panel is frit sealed to the funnel of the tube envelope. This method eliminates a dedicated panel bake before frit sealing of the panel to the funnel.
摘要:
The method of electrophotographically manufacturing a screen assembly on an interior surface of a faceplate panel for a color CRT, according to the present invention, includes the steps of sequentially coating the surface of the panel with a conductive solution to form a volatilizable organic conductive layer and then overcoating the conductive layer with a photoconductive solution to form a volatilizable organic photoconductive layer. The conductive layer, comprising a quaternary ammonium polyelectrolyte and a surfactant, provides an electrode for the photoconductive layer and has improved electrical and physical properties compared to prior conductive layers.
摘要:
In accordance with the present invention, a method of electrophotographically manufacturing a luminescent screen assembly for a color CRT 10 on an interior surface of a faceplate panel 12 is described. A volatilizable organic conductive (OC) layer 32 is provided on the interior surface of the panel and a volatilizable organic photoconductive (OPC) layer 34 overlies the OC layer 32. The method includes the steps of: establishing a substantially uniform electrostatic charge on the OPC layer; exposing selected areas of the OPC layer to visible light to affect the charge thereon; developing the selected areas of the OPC layer with a triboelectrically charged, dry-powdered, first color-emitting phosphor; sequentially repeating the charging, exposing and developing sequence for triboelectrically charged, dry-powdered, second and third color-emitting phosphors to form a luminescent screen comprising picture elements of triads of color-emitting phosphors; fixing the phosphors to the underlying OPC layer with a suitable fixative; filming the phosphors; and aluminizing the filmed phosphors. The present method is an improvement over prior methods because the fixing step utilizes an electrostatic spray to uniformly contact the phosphors and the underlying OPC layer with the fixative, without moving the phosphors.
摘要:
In accordance with the present invention, an apparatus for developing a latent image formed on a photoreceptor, which is deposited on an interior surface of an output window of a display device, is disclosed. The developing apparatus includes a developing chamber, having a support surface for supporting the output window, a screen structure material reservoir for storing, deagglomerating and feeding the screen structure material, and a triboelectric gun assembly communicating with the reservoir. The gun assembly triboelectric charges and imparts a desired charge polarity to the screen structure material. The gun assembly further includes at least one material dispersing nozzle spaced from the support surface for distributing the charged material for deposition onto the latent image.
摘要:
This invention pertains to an electron beam resist method for forming a surface relief pattern in a poly(oelfin sulfone) layer wherein the polymer layer is useful for depositing a metal film thereon and thereby forming a corresponding surface relief pattern in the metal film. The surface relief pattern is formed using poly(3-methyl-1-cyclopentene sulfone) as the poly(olefin sulfone) layer and using a mixture of cycloheptanone and 2-methylcyclohexanol or a mixture of 2-methylcyclohexanone and 3-methylcyclohexanol as the developer for the poly(3-methyl-1-cyclopentene sulfone) layer.
摘要:
Copolymers of an aziridine and sulfur dioxide are disclosed which are useful as positive radiation resists for use in electron beam and x-ray lithography.
摘要:
Recording media comprising a film of a polymer having a repeating unit of the formula ##STR1## wherein R is an alkyl or acyl group and n is an integer are suitable for recording information with electron beams.
摘要:
High density information discs comprising a conductive carbon-loaded polyvinylchloride disc are lubricated with a polyphenylene ether containing a polar dopant substituted with a long chain alkyl group in amounts sufficient to reduce surface tension of the polyphenylene ether to enable adequate wetting of the disc surface. The successful application of this doped lubricant provides the discs with excellent lubrication, highly resistant to oxidation, moisture and shear stress.
摘要:
This invention pertains to an electron beam resist method for forming a surface relief pattern in a poly(olefin sulfone) layer wherein the polymer layer is useful as a sputter etch mask for transferring the surface relief pattern into a metal layer. The surface relief pattern is formed using poly(3-methyl-1-cyclopentene sulfone) as the poly(olefin sulfone) layer and using a mixture of 2-methylcyclohexanone and 2-methylcyclohexanol or a mixture of benzene and 2-methylcyclohexanol as the developer for the poly(3-methyl-1-cyclopentene sulfone) layer.