Abstract:
A method of surface treating a fluid dispenser device, the method including a step of modifying at least one surface to be treated of at least a portion of the device by ionic implantation using multi-charged and multi-energy ion beams. The modified surface to be treated has anti-friction properties, the multi-charged ions are selected from helium (He), nitrogen (N), oxygen (O), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe), and ionic implantation is carried out to a depth of 0 μm to 3 μm.
Abstract:
A method of surface treating a fluid dispenser device, the method including a step of modifying, by ion implantation using multi-charged and multi-energy ion beams, at least one surface to be treated of at least a portion of the device in contact with the fluid. The modified surface has properties limiting the formation of a biofilm and thus the appearance and/or proliferation of bacteria on the modified surface, the multi-charged ions being selected from helium, boron, carbon, nitrogen, oxygen, neon, argon, krypton, and xenon, ionic implantation being carried out to a depth of 0 μm to 3 μm.
Abstract:
A treatment method for treating the surface of a fluid dispenser device, said method comprising the step of using chemical grafting to form a thin film on at least one support surface of at least one movable portion of said device that is movable while said device is being actuated, said thin film having anti-friction properties.
Abstract:
A facility for manufacturing, assembling, and filling a fluid dispenser device comprising a fluid reservoir (10) and a dispensing member (20), such as a pump or a valve, said facility being characterized in that it comprises a manufacturing unit for manufacturing a reservoir, a filling unit for filling said reservoir, and a fixing unit for fixing said dispensing member to said reservoir, said units operating continuously in a controlled atmosphere.
Abstract:
This invention relates to a reservoir (10) for a fluid product containing a single dose, the reservoir (10) comprising an air inlet (11) and a product outlet (15), the air inlet (11) comprising a product retention device (12 and/or 13) to keep the product in the reservoir (10) until dispensation of the product, and the product outlet (15) being blocked, preferably in a sealed fashion, by a closing ball (16) which is removed from its blocking position by the flow of air when the product is being dispensed. This invention also relates to the method of filling the reservoir and a dispensing device for the product contained in the reservoir using an air blast (20).
Abstract:
An apparatus for measuring doses of dispensed products includes a first metering ring (20) mounted to rotate 5 around a rotation axis (1), and drive means (10) that drives the first metering ring to rotate around an axis (1). The drive means (10) is actuated each time the dispenser is actuated. The apparatus also has interlocking means (15, 22) that engage the drive means (10) with the first metering ring (20) after the dispenser has been actuated a predetermined number of times. The first metering ring (20) is driven to rotate once it is engaged with the drive means (10). The apparatus only counts the doses of dispensed product after the dispenser has been actuated a predetermined number of times.
Abstract:
A treatment method for treating the surface of a fluid dispenser device, said method being characterized in that it comprises a step of using chemical grafting to form a thin film on at least one support surface of at least one portion of said device that is in contact with the fluid while said device is being actuated, said thin film having non-stick properties relative to said fluid.
Abstract:
A treatment method for treating the surface of a fluid dispenser device, said method comprising the step of using chemical grafting to form a thin film on at least one support surface of at least one portion of said device that is in contact with said fluid, said thin film having bactericidal and/or bacteriostatic properties.
Abstract:
An electronic display device (20) including a display member (21), said device being characterized in that said display member (21) is permanent so that no energy is required to keep the display unchanged, said display device (20) operating without a battery, the energy required to change the display being created by interaction between two elements, such as by friction or by an impact, thereby creating an electric pulse, said pulse being processed by an electronic circuit (25) before being applied to the display member (21) in order to change its display.
Abstract:
A device for projecting measured quantities of a fluid substance by a puff of compressed air, said device comprising: a body (1) having an ejection channel (4); an actuator member (2) displaceable relative to the body (1) between a rest position and an actuated position; a resilient return member (19) urging the actuator member (2) towards its rest position; a supply (3) of said substance; a feed (5, 6) adapted to move a measured quantity of said substance from the supply (3) into the ejection channel (4); and an air pump (7) comprising a pump chamber (8) having an inlet valve (10, 11) in communication with the atmosphere; the device being characterized in that the outlet valve is constituted by a valve piston (12) constrained to be displaced with the actuator member (2) and sliding in sealed manner in a valve cylinder (13) having a top end (13a), said cylinder having a lateral outlet orifice (14) which communicates with the ejection channel (4), said valve cylinder having its top end (13a) in communication with the pump chamber (8), said lateral outlet orifice being positioned sufficiently far from said top end (13a) of the valve cylinder for the valve piston (12) to isolate the lateral outlet orifice (14) from the pump chamber so long as the actuator member (2) is not in the immediate vicinity of its actuated position.