Abstract:
Thermal management in a portable computing device differentiates between a temperature increase caused by a steady workload and a temperature increase caused by an instantaneous workload. If it is determined that a detected temperature increase is caused by a steady workload, then a configuration of thermal parameters is applied that optimizes thermal performance for a steady workload. If it is determined that a temperature increase is caused by an instantaneous workload increase, then a configuration of thermal parameters is applied that optimizes thermal performance for an instantaneous workload.
Abstract:
Various embodiments of methods and systems for thermal energy management in a portable computing device (“PCD”) based on power level calculations are disclosed. An exemplary method includes tracking instantaneous operating temperatures and active power supply levels to one or more components. With an estimate or measurement of ambient temperature, the instantaneous operating temperature values and active power supply level values can be used to calculate an instantaneous thermal resistance value. In the event that thermal energy generation should be managed, a target operating temperature may be used with the ambient temperature and the instantaneous thermal resistance value to solve for an optimum power supply level. The active power supply level may then be adjusted based on the calculated optimum power supply level.
Abstract:
Various embodiments of methods and systems for idle state optimization in a portable computing device (“PCD”) are disclosed. An exemplary method includes comparing an aggregate power consumption level for all processing cores in the PCD to a power budget and, if there is available headroom in the power budget, transitioning cores operating in a first idle state to a different idle state. In doing so, the latency value associated with bringing the transitioned cores out of an idle state and into an active state, should the need arise, may be reduced. The result is that user experience and QoS may be improved as an otherwise idle core in an idle state with a long latency time may be better positioned to quickly transition to an active state and process a workload.
Abstract:
Various embodiments of methods and systems for adaptive thermal management techniques implemented in a portable computing device (“PCD”) are disclosed. Notably, in many PCDs, temperature thresholds associated with various components in the PCD such as, but not limited to, die junction temperatures, package on package (“PoP”) memory temperatures and the “touch temperature” of the external surfaces of the device itself limits the extent to which the performance capabilities of the PCD can be exploited. It is an advantage of the various embodiments of methods and systems for adaptive thermal management that, when a temperature threshold is violated, the performance of the PCD is sacrificed only as much and for as long as necessary to clear the violation before authorizing the thermally aggressive processing component(s) to return to a maximum operating power.
Abstract:
Various embodiments of methods and systems for estimating environmental ambient temperature of a portable computing device (“PCD”) from electrical resistance measurements taken voice coils in a speaker or microphone component are disclosed. In an exemplary embodiment, it may be recognized that the PCD is in an idle state, thus producing little or no thermal energy. Electrical resistance measurements are taken from a voice coil and used to estimate the environmental ambient temperature to which the PCD is exposed. Certain embodiments may simply render the estimated ambient temperature for the benefit of the user or use the estimated ambient temperature as an input to a program or application running on the PCD. It is envisioned that certain embodiments of the systems and methods may use the estimated ambient temperature to adjust temperature thresholds in the PCD against which thermal management policies govern thermally aggressive processing components.