Abstract:
A small base node such as a Home Base Node (HNB), or femto cell, may reduce its transmit power in order to prevent co-channel or adjacent channel interference, or to limit its coverage area. Once the power is set, the HNB signal to a served Home User Equipment (HUE) its transmit Common Pilot Channel (CPICH) transmit power for accurate path loss estimation. When this power is outside of the permissible range, the HNB adjusts other parameters (such as Random Access Channel (RACH) constant value) to compensate for the error in signaled CPICH power, and thus compensate in that process the error in determining path loss. Similarly, if the uplink sensitivity is adjusted, to prevent interference, parameters would also be adjusted and signaled to the HUE to reflect the link imbalance.
Abstract:
The present disclosure presents a method and an apparatus for optimizing coverage area of a small cell. For example, the disclosure presents a method for estimating an available backhaul capacity of a small cell and determining a target OTA data rate for the small cell based at least on the estimated available backhaul capacity, and changing a coverage area of the small cell based at least on the determined target OTA data rate by. As such, optimizing coverage area of a small cell may be achieved.
Abstract:
Systems and methods for radar detection in a communication environment are disclosed. The radar detection may comprise, for example: receiving a first signal; identifying the first signal as a potential radar signal; limiting transmission by an apparatus as a result of the identification; receiving a second signal while the transmission by the apparatus is limited; and determining whether at least one of the first signal, the second signal, or a combination thereof is a radar signal.
Abstract:
An apparatus, configured to communicate with an access terminal in a wireless network and operating in a frequency-division duplexing mode, can be caused to refrain from transmitting during at least one subframe of a frame of a downlink frequency band, and can be caused to monitor for the radar transmission during the at least one subframe of the frame of the downlink frequency band. Optionally, a placement of the at least one subframe within the frame of the downlink frequency band can correspond to a placement of at least one subframe that is designated for an uplink communication within a frame of a wireless network that is operating in accordance with the Long-Term Evolution Time-Division Duplex standard, or can correspond to a placement of at least one subframe that is designated for a transmission in accordance with the Multimedia Broadcast Multicast Service specification.
Abstract:
Aspects describe communications environments in which femtocell capability is provided to devices within the communications network. A non-femto enabled device and/or a femto enabled device can communicate with a femto enabled device in the same geographical area for femto-enabled peer-to-peer communication. Two non-femto enabled devices can be provided femto functionality through utilization of a femto enabled device, which operates as a hub between the two devices. Other aspects relate to enhanced position determination, adaptive coverage enhancement, local mobile networks, open access femtocells without a backhaul, and local broadcast of media though utilization of femto enabled devices.
Abstract:
Methods and apparatus are disclosed for femtocell backhaul sharing. The method includes determining whether an available bandwidth for communication by the network entity is below a bandwidth threshold. The method includes requesting additional bandwidth from at least one neighbor network node in response to determining that the available bandwidth is below the bandwidth threshold. The method includes receiving configuration information from the at least one neighbor network node to increase the available bandwidth by at least a portion of the requested additional bandwidth.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with determining whether to offload a device from a femto node. In one example, a serving femto node is equipped to obtain load information regarding a target node, compare an expected throughput at the target node, estimated based in part on the load information, to a threshold, and determine whether to handover a device to the target node based in part on the comparing. In an aspect, the serving node is further equipped to compute its own throughput based on parameters specific to the serving femto node or the device, and the threshold is the throughput at the serving femto node.
Abstract:
Various aspects described herein relate to techniques for managing downlink control information (DCI) in wireless communications (e.g., 5G NR). In an aspect, the method includes receiving a radio resource control (RRC) message, identifying a transport block size (TBS) based on the received RRC message, receiving DCI on a downlink channel with the DCI including a resource assignment, identifying a modulation order using a modulation and coding scheme (MCS) in an MCS field of the DCI, where the size of the MCS field is one bit or two bits, and calculating a coding rate based on at least the identified TBS, the identified modulation order and the resource assignment.
Abstract:
Coexistence solutions may be needed for sharing channels with multiple operators. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for sharing channels with multiple operators are provided. The apparatus may detect a conflict between a first base station and a second base station based on a coverage overlap between the first base station and the second base station. The apparatus may resolve the conflict based on a classification of the conflict, and at least one of a channel priority or a channel preference.
Abstract:
A multi-mode access point supports different radio access technologies (e.g., Wi-Fi and cellular) for serving multi-mode access terminals. To provide improved service for such an access terminal, the access point may redirect the access terminal from a first type of radio access technology to a second type of radio access technology under certain circumstances. A decision to invoke such a redirection may be based on, for example, at least one of: traffic conditions on the first type of radio access technology, traffic conditions on the second type of radio access technology, and whether a backhaul for the access point is currently a bottleneck for access point communication.