Abstract:
Field-effect transistor (FET) circuits employing topside and backside contacts for topside and backside routing of FET power and logic signals. A FET circuit is provided that includes a FET that includes a conduction channel, a source, a drain, and a gate. The FET circuit also includes a topside metal contact electrically coupled with at least one of the source, drain, and gate of the FET. The FET circuit also includes a backside metal contact electrically coupled with at least one of the source, drain, and gate of the FET. The FET circuit also includes topside and backside metal lines electrically coupled to the respective topside and backside metal contacts to provide power and signal routing to the FET. A complementary metal oxide semiconductor (CMOS) circuit is also provided that includes a PFET and NFET that each includes a topside and backside contact for power and signal routing.
Abstract:
A bitcell architecture for a pseudo-triple-port memory is provided that includes a a bitcell arranged on a semiconductor substrate, the bitcell defining a bitcell width and a bitcell height and including a first access transistor and a second access transistor. A first metal layer adjacent the semiconductor substrate is patterned to form a pair of local bit lines arranged within the bitcell width. The pair of local bit lines includes a local bit line coupled to a terminal of the first access transistor and includes a complement local bit line coupled to a terminal of the second access transistor.
Abstract:
According to certain aspects of the present disclosure, a chip includes a first gate, a second gate, a first source, a first source contact disposed on the first source, a metal interconnect above the first source contact and the first gate, a first gate contact electrically coupling the first gate to the metal interconnect, and a first via electrically coupling the first source contact to the metal interconnect. The chip also includes a power rail, and a second via electrically coupling the first source contact to the power rail. The second gate is between the first source and the first gate, and the metal interconnect passes over the second gate.
Abstract:
A semiconductor apparatus is provided herein for reducing power when transmitting data between a first device and a second device in the semiconductor apparatus. Additional circuitry is added to the semiconductor apparatus to create a communication system that decreases a number of state changes for each signal line of a data bus between the first device and the second device for all communications. The additional circuitry includes a decoder coupled to receive and convert a value from the first device for transmission over the data bus to an encoder that provides a recovered (i.e., re-encoded) version of the value to the second device. One or more multiplexers may also be included in the additional circuitry to support any number of devices.
Abstract:
A chip includes a first gate extended along a second lateral direction, a first source electrically coupled to a power rail, and a first metal interconnect extended along a first lateral direction approximately perpendicular to the second lateral direction, wherein the first metal interconnect lies above the first gate and the first source, and the first metal interconnect is configured to electrically couple the first gate to the first source. The chip also includes a second gate extended along the second lateral direction, a second source electrically coupled to the power rail, and a second metal interconnect extended along the first lateral direction, wherein the second metal interconnect lies above the second gate and second source, the second metal interconnect is configured to electrically couple the second gate to the second source, and the first metal interconnect is aligned with the second metal interconnect in the second lateral direction.
Abstract:
In certain aspects, a semiconductor die includes a first doped region, a second doped region, and an interconnect formed from a first middle of line (MOL) layer, wherein the interconnect electrically couples the first doped region to the second doped region. The semiconductor die also includes a first metal line formed from a first interconnect metal layer, and a first via electrically coupling the interconnect to the first metal line.
Abstract:
Systems and methods for level-shifting multiplexing are described herein. In one embodiment, a method for level-shifting multiplexing comprises selecting one of a plurality of inputs based on one or more select signals, and pulling down one of first and second nodes based on a logic state of the selected one of the plurality of inputs. The method also comprises pulling up the first node if the second node is pulled down, and pulling up the second node if the first node is pulled down.
Abstract:
In one example, the apparatus includes a first AND gate, a second AND gate, a first NOR gate, a second NOR gate, a third NOR gate, a first inverter, and a second inverter. The first AND gate output is coupled to the first NOR gate first input. The first NOR gate output is coupled to the second NOR gate first input. The second NOR gate output is coupled to the first NOR gate second input. The first inverter output is coupled to the first AND gate second input and the second NOR gate second input. The second AND gate first input is coupled to the first inverter output. The third NOR gate first input is coupled to the second NOR gate output. The third NOR gate second input is coupled to the second AND gate output. The second inverter output is coupled to the second AND gate second input.
Abstract:
A reconfigurable instruction cell array (RICA) is provided that includes a plurality of master switch boxes that are configured to read and write from a plurality of buffers through a cross-bar switch. A master built-in-self-test (MBIST) engine is configured to drive a test word into the write path of at least one master switch box and to control the cross-bar switch so that the driven test word is broadcast to all the buffers for storage. The MBIST engine is also configured to retrieve the stored test words from the buffers through a read bus within the cross-bar switch.
Abstract:
A MOS IC logic cell includes a plurality of gate interconnects extending on tracks in a first direction. The logic cell includes intra-cell routing interconnects coupled to at least a subset of the gate interconnects. The intra-cell routing interconnects include intra-cell Mx layer interconnects on an Mx layer extending in the first direction. The Mx layer is a lowest metal layer for PG extending in the first direction. The intra-cell Mx layer interconnects extend in the first direction over at least a subset of the tracks excluding every mth track, where 2≤m m*P.