Abstract:
Field-effect transistor (FET) circuits employing topside and backside contacts for topside and backside routing of FET power and logic signals. A FET circuit is provided that includes a FET that includes a conduction channel, a source, a drain, and a gate. The FET circuit also includes a topside metal contact electrically coupled with at least one of the source, drain, and gate of the FET. The FET circuit also includes a backside metal contact electrically coupled with at least one of the source, drain, and gate of the FET. The FET circuit also includes topside and backside metal lines electrically coupled to the respective topside and backside metal contacts to provide power and signal routing to the FET. A complementary metal oxide semiconductor (CMOS) circuit is also provided that includes a PFET and NFET that each includes a topside and backside contact for power and signal routing.
Abstract:
An integrated circuit includes a capacitor having first, second and third nodes. The first and second nodes of the first transistor are connected together and the first and second nodes of the second transistor are connected together. The third node of the first transistor is connected to the third node of the second transistor. Each of the third nodes is constructed so that each node comprises a width and a length that is at least ten percent of the width.
Abstract:
A semiconductor standard cell includes an N-type diffusion area and a P-type diffusion area, both extending across the cell and also outside of the cell. The cell also includes a conductive gate above each diffusion area to create a semiconductive device. A pair of dummy gates are also above the N-type diffusion area and the P-type diffusion area creating a pair of dummy devices. The pair of dummy gates are disposed at opposite edges of the cell. The cell further includes a first conductive line configured to couple the dummy devices to power for disabling the dummy devices.
Abstract:
A MOS IC logic cell includes a plurality of gate interconnects extending on tracks in a first direction. The logic cell includes intra-cell routing interconnects coupled to at least a subset of the gate interconnects. The intra-cell routing interconnects include intra-cell Mx layer interconnects on an Mx layer extending in the first direction. The Mx layer is a lowest metal layer for PG extending in the first direction. The intra-cell Mx layer interconnects extend in the first direction over at least a subset of the tracks excluding every mth track, where 2≤m m*P.
Abstract:
A transistor cell is provided that includes a dummy gate overlaying a continuous oxide definition (OD) region. A first portion of the OD region adjacent a first side of the dummy forms the drain. The cell includes a local interconnect structure that couples the dummy gate and a portion of the OD region adjacent a second opposing side of the dummy gate to a source voltage.
Abstract:
A semiconductor standard cell includes an N-type diffusion area and a P-type diffusion area, both extending across the cell and also outside of the cell. The cell also includes a conductive gate above each diffusion area to create a semiconductive device. A pair of dummy gates are also above the N-type diffusion area and the P-type diffusion area creating a pair of dummy devices. The pair of dummy gates are disposed at opposite edges of the cell. The cell further includes a first conductive line configured to couple the dummy devices to power for disabling the dummy devices.
Abstract:
An integrated circuit includes a capacitor having first, second and third nodes. The first and second nodes of the first transistor are connected together and the first and second nodes of the second transistor are connected together. The third node of the first transistor is connected to the third node of the second transistor. Each of the third nodes is constructed so that each node comprises a width and a length that is at least ten percent of the width.
Abstract:
Circuits employing a back side-front side connection structure for coupling back side routing to front side routing, and related complementary metal oxide semiconductor (CMOS) circuits and methods are disclosed. The circuit includes a front side metal line disposed adjacent to a front side of a semiconductor device for providing front side signal routing. The circuit also includes a back side metal line disposed adjacent to a back side of the semiconductor device for providing back side signal routing. In this manner, the back side area of the semiconductor device may be employed for signal routing to conserve area and/or reduce routing complexity. The circuit also includes a back side-front side connection structure that electrically couples the front side metal line to the back side metal line to support signal routing from the back side to the front side of the circuit, or vice versa to provide greater routing flexibility.
Abstract:
In certain aspects, a semiconductor die includes a first doped region, a second doped region, and an interconnect formed from a first middle of line (MOL) layer, wherein the interconnect electrically couples the first doped region to the second doped region. The semiconductor die also includes a first metal line formed from a first interconnect metal layer, and a first via electrically coupling the interconnect to the first metal line.
Abstract:
A standard cell CMOS device includes metal oxide semiconductor transistors having gates formed from gate interconnects. The gate interconnects extend in a first direction. The device further includes M1 layer interconnects. The M1 layer interconnects are parallel to the gate interconnects and extend in the first direction only. The device further includes a M0 layer interconnect. The M0 layer interconnect extends directly over a first gate interconnect and extends in a second direction orthogonal to the first direction only. The M0 layer interconnect is below the M1 layer and is isolated from directly connecting to the first gate interconnect. The device further includes a layer interconnect that is different from the M1 layer interconnects and the M0 layer interconnect. The layer interconnect is connected to the M0 layer interconnect and is directly connected to a second gate electrode.