Abstract:
Methods, apparatus, and computer-readable mediums for wireless communication are provided. One apparatus is configured to receive at least one SA from at least one UE. The apparatus is further configured to determine an energy associated with each at least one SA. The apparatus is also configured to rank data transmission time-frequency resources based on the determined energy associated with said each received at least one SA. Each at least one SA are associated with a different subset of the data transmission time-frequency resources. The apparatus is further configured to select a set of data transmission time-frequency resources based on the ranked data transmission time-frequency resources and to send a data transmission on the selected set of data transmission time-frequency resources. Another apparatus is configured to partitioning time-frequency resources into different resource groups, to divide UEs into UE groups based on location, and map the UE groups to the resource groups.
Abstract:
Various aspects of the disclosure relate to limits for modulation and coding scheme (MCS) values. For example, a first set of limits (e.g., minimum and maximum limits) may be used for a first MCS table and a second set of limits may be used for a second MCS table. The disclosure also relates in some aspects to inter-device signaling that indicates which minimum and maximum limits for an MCS table are to be used for communication between the devices.
Abstract:
Various aspects of the disclosure relate to the selection and use of modulation and coding scheme (MCS) values. For example, a first MCS table may be used for a first condition and a second MCS table used for a second condition. The disclosure relates in some aspects to inter-device signaling that indicates which MCS table is to be used for communication between the devices.
Abstract:
Disclosed are techniques for using ranging signals to determine a position of a pedestrian user equipment (P-UE). In an aspect, a UE receives a plurality of ranging signals transmitted by one or more UEs, measures one or more properties of each of the plurality of ranging signals, and calculates an estimate of the position of the P-UE based on the one or more properties of each of the plurality of ranging signals. In an aspect, the P-UE transmits a plurality of ranging signals, receives a first message and a second message from first and second vehicle UEs (V-UEs), the first and second messages including first and second estimated positions of the P-UE and associated first and second confidences, and calculates an estimate of the position of the P-UE based on the first estimated position, the first confidence, the second estimated position, the second confidence, or a combination thereof.
Abstract:
Methods, systems, and devices for ranging are described. A multi-phase distributed ranging technique includes transmitting and receiving vehicle information messages during a first time interval, where the vehicle information messages include at least a vehicle identifier and resource information. The multi-phase technique further includes transmitting and receiving ranging signals during a second time interval, and determining times of arrival of received ranging signals. A centralized ranging technique includes receiving resource assignments from an access point, transmitting ranging signals according to the resource assignments, and determining times of arrival of received ranging signals.
Abstract:
Various aspects related to frequency biasing to compensate for frequency variations caused by Doppler shift in V2V communication systems are described. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus, e.g., a UE, may be configured to determine a velocity of the apparatus, and determine a frequency biasing adjustment based on the determined velocity of the apparatus. The apparatus may be further configured to communicate with UE based on an adjusted carrier frequency determined based on a carrier frequency and the determined frequency biasing adjustment. In some configurations, a driving environment of the apparatus maybe considered, and the frequency biasing adjustment is determined further based on the determined driving environment.
Abstract:
Aspects described herein generally relate to communicating buffer status reports (BSR) in wireless communications. A BSR can be generated at a device indicating a size of each of a plurality of messages stored in a buffer of the device for communicating from the device to one or more other devices. The BSR can be transmitted to a base station to request resources for communicating one or more of the plurality of messages to the one or more other devices.
Abstract:
Disclosed are techniques for using ranging signals to determine a position of a pedestrian user equipment (P-UE). In an aspect, a UE receives a plurality of ranging signals transmitted by one or more UEs, measures one or more properties of each of the plurality of ranging signals, and calculates an estimate of the position of the P-UE based on the one or more properties of each of the plurality of ranging signals. In an aspect, the P-UE transmits a plurality of ranging signals, receives a first message and a second message from first and second vehicle UEs (V-UEs), the first and second messages including first and second estimated positions of the P-UE and associated first and second confidences, and calculates an estimate of the position of the P-UE based on the first estimated position, the first confidence, the second estimated position, the second confidence, or a combination thereof.
Abstract:
Methods, apparatuses, and computer-readable mediums for wireless communication are disclosed by the present disclosure. In an example, the present disclosure includes selecting, at a first device, a Random Access Channel (RACH) preamble identifier (ID) from a set of RACH preamble IDs based on a discovery procedure associated with a second device, wherein each RACH preamble ID from the set of RACH preamble IDs corresponds to at least one RACH preamble and is associated with the second device; and transmitting, from the first device, a RACH preamble associated with the selected RACH preamble ID to the second device.
Abstract:
Disclosed are techniques for using ranging signals to determine a position of a pedestrian user equipment (P-UE). In an aspect, a UE receives a plurality of ranging signals transmitted by one or more UEs, measures one or more properties of each of the plurality of ranging signals, and calculates an estimate of the position of the P-UE based on the one or more properties of each of the plurality of ranging signals. In an aspect, the P-UE transmits a plurality of ranging signals, receives a first message and a second message from first and second vehicle UEs (V-UEs), the first and second messages including first and second estimated positions of the P-UE and associated first and second confidences, and calculates an estimate of the position of the P-UE based on the first estimated position, the first confidence, the second estimated position, the second confidence, or a combination thereof.