Abstract:
A system with a prefetch address generator coupled to a system translation look-aside buffer that comprises a translation cache. Prefetch requests are sent for page address translations for predicted future normal requests. Prefetch requests are filtered to only be issued for address translations that are unlikely to be in the translation cache. Pending prefetch requests are limited to a configurable or programmable number. Such a system is simulated from a hardware description language representation.
Abstract:
A coherency controller, such as one used within a system-on-chip, is capable of issuing different types of snoops to coherent caches. The coherency controller chooses the type of snoop based on the type of request that caused the snoops or the state of the system or both. By so doing, coherent caches provide data when they have sufficient throughput, and are not required to provide data when they do not have insufficient throughput.
Abstract:
A simplified coherency controller supports multiple exclusively active fully coherent agent interfaces and any number of active I/O (partially) coherent agent interfaces. A state controller determines which fully coherent agent is active. Multiple fully coherent agents can be simultaneously active during a short period of a transition of processing from one to another processor. Multiple fully coherent agents can be simultaneously active, though without a mutually consistent view of memory, which is practical in cases such as when running multiple operating systems on different processors.
Abstract:
A cache coherency controller, a system comprising such, and a method of its operation are disclosed. The coherency controller ensures that target-side security checking rules are not violated by the performance-improving processes commonly used in coherency controllers such as dropping, merging, invalidating, forwarding, and snooping. This is done by ensuring that requests marked for target-side security checking and any other requests to overlapping addresses are forwarded directly to the target-side security filter without modification or side effects.
Abstract:
System TLBs are integrated within an interconnect, use a and share a transport network to connect to a shared walker port. Transactions are able to pass STLB allocation information through a second initiator side interconnect, in a way that interconnects can be cascaded, so as to allow initiators to control a shared STLB within the first interconnect. Within the first interconnect, multiple STLBs share an intermediate-level translation cache that improves performance when there is locality between requests to the two STLBs.
Abstract:
A system TLB accepts translation prefetch requests from initiators. Misses generate external translation requests to a walker port. Attributes of the request such as ID, address, and class, as well as the state of the TLB affect the allocation policy of translations within multiple levels of translation tables. Translation tables are implemented with SRAM, and organized in groups.
Abstract:
A cache coherency controller, a system comprising such, and a method of its operation are disclosed. The coherency controller ensures that target-side security checking rules are not violated by the performance-improving processes commonly used in coherency controllers such as dropping, merging, invalidating, forwarding, and snooping. This is done by ensuring that requests marked for target-side security checking and any other requests to overlapping addresses are forwarded directly to the target-side security filter without modification or side effects.