Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate; providing a sacrificial layer directly or indirectly on the substrate; providing one or more micromechanical structural layers on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material. Another embodiment of the method is for etching a silicon material on or within a substrate, comprising: performing a first etch to remove a portion of the silicon, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of silicon; performing a second etch to remove additional silicon, the second etch comprising providing an etchant gas that chemically but not physically etches the additional silicon.
Abstract:
Processes for the removal of a layer or region from a workpiece material by contact with a process gas in the manufacture of a microstructure are enhanced by the ability to accurately determine the endpoint of the removal step. A vapor phase etchant is used to remove a material that has been deposited on a substrate, with or without other deposited structure thereon. By creating an impedance at the exit of an etching chamber (or downstream thereof), as the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the endpoint of the removal process can be determined. The vapor phase etching process can be flow through, a combination of flow through and pulse, or recirculated back to the etching chamber
Abstract:
The etching of a material in a vapor phase etchant is disclosed where a vapor phase etchant is provided to an etching chamber at a total gas pressure of 10 Torr or more, preferably 20 Torr or even 200 Torr or more. The vapor phase etchant can be gaseous acid etchant, a noble gas halide or an interhalogen. The sample/workpiece that is etched can be, for example, a semiconductor device or MEMS device, etc. The material that is etched/removed by the vapor phase etchant is preferably silicon and the vapor phase etchant is preferably provided along with one or more diluents. Another feature of the etching system includes the ability to accurately determine the end point of the etch step, such as by creating an impedance at the exit of the etching chamber (or downstream thereof) so that when the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the end point of the removal process can be determined. The vapor phase etching process can be flow through, a combination of flow through and pulse, or recirculated back to the etching chamber. A first plasma or wet chemical etch (or both) can be performed prior to the vapor phase etch.