Abstract:
A chemical liquid treatment apparatus includes processing chambers; a chemical liquid feeding unit configured to cyclically feed a chemical liquid into the processing chambers; and a modifying unit. The modifying unit, when using a chemical liquid in which an effect thereof varies with a chemical liquid discharge time, is configured to calculate a variation of the effect of the chemical liquid based on the chemical liquid discharge time and is configured to modify the chemical liquid discharge time for each of the processing chambers based on the calculated variation of the effect of the chemical liquid and a cumulative time of the chemical liquid discharge time.
Abstract:
Embodiments of the present invention relate to methods and systems for making a microelectromechanical system comprising supplying an etchant to etch one or more sacrificial structures of the system.
Abstract:
A gas sensor and method of gas sensing, e.g., of a type as useful with downstream sensor elements for determining the plasma conditions (e.g., plasma etching end point) in a semiconductor etching facility that utilizes halogen-containing plasma and/or oxygen-containing plasma. Such sensor elements are capable of exhibiting temperature change in the presence of energetic gas species, e.g., fluorine, chlorine, iodine, bromine, oxygen, and derivatives and radicals thereof that are generated by the plasma, and correspondingly generating an output signal indicative of such temperature change for determination of the plasma conditions in the etching plasma processing facility.
Abstract:
The present invention relates to micro electromechanical systems (MEMS) devices and more specifically to a process for manufacturing MEMS devices having at least one suspended structural element. The present invention seeks to provide an improved method for manufacture of MEMS devices having improved safety and increased yield and throughput compared to conventional EDP immersion process techniques. MEMS devices are made using a modified dissolution process that removes, in a selective etch step, inactive silicon to release an active silicon device from a sacrificial substrate. The present invention uses a selective etchant in conjunction with a commercial spray acid processing tool to provide a dissolution process with improved throughput, improved repeatable and uniform etch rates and reduction in the number of processing steps and chemical containment for improved safety. When the etch process is complete, the solvent spray is turned off and a spray of de-ionized water is directed onto composite structure to remove residual solvent without causing suspended elements to adhere to the support substrate.
Abstract:
The present disclosure provides systems and methods for characterizing the interaction of free radicals with various materials and the use of known interactions to isolate free radical generation from free radical interaction with a target molecule.
Abstract:
Methods and systems for controlling processing state of a plasma reactor to initiate processing of production substrates and/or to determine a ready state of a reactor after the reactor has been cleaned and needs to be seasoned for subsequent production wafer processing are provided. The method initiate processing of a substrate in the plasma reactor using settings for tuning knobs of the plasma reactor that are approximated to achieve desired processing state values. A plurality of data streams are received from the plasma reactor during the processing of the substrate. The plurality of data streams are used to identify current processing state values. The method includes generating a compensation vector that identifies differences between the current processing state values and the desired processing state values. The generation of the compensation vector uses machine learning to improve and refile the identification and amount of compensation needed, as identified in the compensation vector. The method further includes transforming the compensation vector into adjustments to the settings for the tuning knobs and then applying the adjustment to the tuning knobs of the plasma reactor.
Abstract:
A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.
Abstract:
A method comprises forming an etch stop layer, a first titanium layer, a magnetic core, a second titanium layer, and patterning the first and second titanium layers. The etch stop layer is formed above a substrate. The first titanium layer is formed on the etch stop layer. The magnetic core is formed on the first titanium layer. The second titanium layer has a first portion encapsulating the magnetic core with the first titanium layer, and a second portion interfacing with the first titanium layer beyond the magnetic core. The patterning of the first and second titanium layers includes forming a mask over a magnetic core region and etching the first and second titanium layers exposed by the mask using a titanium etchant and a titanium oxide etchant.
Abstract:
The invention relates to a silicon-based component with at least one reduced contact surface which, formed from a method combining at least one oblique side wall etching step with a “Bosch” etch of vertical side walls, improves, in particular, the tribology of components formed by micromachining a silicon-based wafer.
Abstract:
The etching of a material in a vapor phase etchant is disclosed where a vapor phase etchant is provided to an etching chamber at a total gas pressure of 10 Torr or more, preferably 20 Torr or even 200 Torr or more. The vapor phase etchant can be gaseous acid etchant, a noble gas halide or an interhalogen. The sample/workpiece that is etched can be, for example, a semiconductor device or MEMS device, etc. The material that is etched/removed by the vapor phase etchant is preferably silicon and the vapor phase etchant is preferably provided along with one or more diluents. Another feature of the etching system includes the ability to accurately determine the end point of the etch step, such as by creating an impedance at the exit of the etching chamber (or downstream thereof) so that when the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the end point of the removal process can be determined. The vapor phase etching process can be flow through, a combination of flow through and pulse, or recirculated back to the etching chamber. A first plasma or wet chemical etch (or both) can be performed prior to the vapor phase etch.