Abstract:
A motor controller for an electric motor includes an enclosure and a processing device, memory device, and communication interface disposed within the enclosure. The processing device is configured to control the electric motor and collect operating information from the electric motor during operation of the electric motor. The memory device is communicatively coupled to the processing device. The memory device is configured to receive and store the operating information collected during operation of the electric motor. The communication interface is communicatively coupled to the processing device and the memory device, and is configured to enable access to the operating information stored on the memory device by a computing device disposed remotely from the electric motor.
Abstract:
A control system is provided for an electric motor configured to drive a fluid moving apparatus to generate a fluid-flow. The control system includes a drive circuit configured to regulate power supplied to a stator of the motor to turn a rotor and generate the fluid-flow, and a processor that computes a value proportional to at least one of a system resistance or a static pressure for the fluid moving apparatus based on a fixed set point for a first control parameter and a feedback parameter. The processor receives a fluid-flow rate demand and computes an operating set point for a second control parameter based on the fluid-flow rate demand and the value proportional to the system resistance or the static pressure. The processor controls the drive circuit based on the operating set point to supply power to the motor and operate the fluid moving apparatus to generate the fluid-flow.
Abstract:
In one aspect, a centrifugal blower assembly is provided. The centrifugal blower assembly includes a housing defining an interior space and an impeller configured to channel an airflow within the interior space. A motor is coupled to the impeller and configured to rotate the impeller about an axis. The centrifugal blower also includes a plurality of mounting arms. Each mounting arm of the plurality of mounting arms includes a first end coupled to the housing and a second end coupled to the motor. Each mounting arm of the plurality of mounting arms has a cross-sectional profile that comprises a portion of an airfoil shape.
Abstract:
A motor controller coupled to a motor is provided. The motor controller is configured to transmit a first instruction to the motor to perform a first start attempt utilizing at least one parameter in a first set of parameters, wherein the first set of parameters are not preconfigured for a specific application in which the motor is being installed. The motor controller is additionally configured to receive feedback associated with the first start attempt from the motor, and transmit, in response to the feedback, a second instruction to the motor to perform a second start attempt utilizing at least one parameter in a second set of parameters, wherein the second set of parameters differ from the first set of parameters.
Abstract:
A method for determining a direction of rotation for an electronically commutated motor (ECM) is described. The motor is configured to rotate a blower and the method comprises rotating the blower using the ECM and determining if the resulting blower rotation is indicative of the desired direction of rotation for the blower.
Abstract:
A method for determining a direction of rotation for an electronically commutated motor (ECM) is described. The motor is configured to rotate a blower and the method comprises rotating the blower using the ECM and determining if the resulting blower rotation is indicative of the desired direction of rotation for the blower.
Abstract:
A unit for recording operating information of an electronically commutated motor (ECM) is described. The unit includes a system controller communicatively coupled to an ECM. The system controller includes a processing device configured to control the unit. The unit also includes a memory device communicatively coupled to the system controller. The memory device is configured to receive and store ECM operating information provided by the processing device.
Abstract:
A motor control system for heating, ventilation, and air conditioning (HVAC) applications is described. The motor control system includes a thermostat and an electronically commutated motor (ECM) coupled to the thermostat. The ECM is configured to retrofit an existing non-ECM electric motor included in an HVAC application and to operate in one of a plurality of HVAC modes. The HVAC modes include at least one of a heating mode, a cooling mode, and a continuous fan mode. The HVAC mode is determined based at least partially on outputs provided by the thermostat.
Abstract:
A motor controller for an electric motor includes an enclosure and a processing device, memory device, and wireless transmitter disposed within the enclosure. The processing device is configured to control the electric motor and collect operating information from the electric motor during operation of the electric motor. The memory device is communicatively coupled to the processing device. The memory device is configured to receive and store the operating information collected during operation of the electric motor. The wireless transmitter is communicatively coupled to the processing device and the memory device. The wireless transmitter is configured to transmit the operating information stored on the memory device to a computing device disposed remotely from the electric motor.
Abstract:
A motor controller for an electric motor includes a drive circuit that regulates power supplied to a stator of the electric motor to turn a rotor. The motor controller includes a communication interface that receives coefficients. The motor controller includes a processor coupled to the drive circuit. The processor receives an airflow rate demand, computes a speed, computes a torque set point as a function of at least a sum of first and second terms. The first term is defined as the first coefficient multiplied by the airflow rate demand raised to a power greater than one, and the second term is defined as the second coefficient multiplied by the speed raised to a power greater than one. The processor controls the drive circuit based on the torque set point to supply electrical power to the electric motor.