摘要:
A catalyst, e.g., a cracking catalyst, and a part of the regeneration fumes are drawn off from the dense catalytic bed of a second regenerator (9) and are introduced by force of gravity into an external exchanger (21) at a junction point beneath the level of the dense bed of the second regenerator. The heat exchange takes place in the bottom part of the exchanger below the junction point. Between the bottom end of the exchanger and the region above the junction point a dense bed zone is formed at a level which is substantially at the height of the dense bed in the regenerator and a discharge zone (27), of suitable size, for the regeneration gases and fluidization gas. The gases and fumes from the exchanger are removed in the diluted fluidized phase from the second regenerator through a conduit (28), while the catalyst is recycled in to the bed of the first regenerator through a conduit (34).
摘要:
The invention concerns a process for thermal regulation in a continuous fluidized bed treatment process for a powdered solid, wherein the solid is treated in a fluidized bed treatment zone, at least a portion of the solid is extracted from said zone and transported to an external heat exchanger (21) containing at least one array (22) of thermal exchange tubes in which vaporizable cooling fluid circulates, fluidized or mobile bed thermal regulation by indirect heat exchange with the fluid is carried out and the portion of regulated solid is extracted for recycling into the treatment zone or to another treatment zone (1). More precisely, said portion of solid is circulated in descending mode by means of an inert or non inert fluidization fluid across the array of tubes (22) which are wound such that the current of solid intersects said tubes and that the cooling fluid is circulated in one direction in the array of tubes.
摘要:
A catalyst, e.g., a cracking catalyst, and a part of the regeneration fumes are drawn off from the dense catalytic bed of a second regenerator (9) and are introduced by force of gravity into an external exchanger (21) at a junction point beneath the level of the dense bed of the second regenerator. The heat exchange takes place in the bottom part of the exchanger below the junction point. Between the bottom end of the exchanger and the region above the junction point a dense bed zone is formed at a level which is substantially at the height of the dense bed in the regenerator and a discharge zone (27), of suitable size, for the regeneration gases and fluidization gas. The gases and fumes from the exchanger are removed in the diluted fluidized phase from the second regenerator through a conduit (28), while the catalyst is recycled into the bed of the first regenerator through a conduit (34).
摘要:
A process is described for catalytic cracking of a petroleum feed in which a catalyst from a regeneration zone 4 is caused to flow in a dense fluidized bed conditioning zone 2 upstream of an injection zone 10, the fluidization rate being 0.1 to 30 cm/s. The throughput of catalyst into injection zone 10 is regulated by a constriction means 11. The hydrocarbon feed 12 is injected below the constriction means and flows counter-current to the direction of flow of the shaped catalyst flow. The hydrocarbon feed 12 is injected at a set injection angle depending on the movement of the feed and the catalyst.
摘要:
The invention relates to a process for catalytic cracking and the associated apparatus in which the cracking reaction takes place in two substantially vertical and successive reaction zones, the loads being introduced into the first zone where it circulates from the top downwards, then at least a part of the product obtained is introduced into a second reaction zone in which it circulates in an ascending fashion. A supplementary hydrocarbonated phase is advantageously introduced into the product entering the second zone. The invention applies particularly to heavy loads, with a U-shaped apparatus.
摘要:
The invention relates to a method of and an apparatus for fluidised bed regeneration of a catalyst containing coke.The catalyst and some of the regeneration fumes are drawn off from the dense bed of a regenerator (1) and are introduced by gravity into an external exchanger at a junction point below the level of the dense bed of the regenerator. Heat exchange is carried out in the lower part of the exchanger (7) below the junction point. From the bottom end of the exchanger up to above the junction point a dense bed zone is created the level of which is established substantially at the height of the dense bed in the regenerator and a zone (15) of suitable size for the escape of regeneration gases and fluidisation gas. The gases and fumes are drawn off into the dilute fluidised phase (18) of the regenerator through a duct (17) while the catalyst is recycled to the dense bed of the regenerator through a different duct (25) from that in which the fluidisation air is circulating.Application to the regeneration of fluid bed cracking catalysts.
摘要:
A process for manufacturing synthesis gas (16) from hydrocarbons, water, free oxygen, and a transfer gas containing steam and carbon oxides. The transfer gas is passed through a succession of essentially adiabatic catalyst beds (2, 3, 4, 5, 6, 7) and the hydrocarbons (9, 10,11) and oxygen (13, 14, 15) are alternately introduced at the input of each catalyst bed. The transfer gas may be prepared by vivid combustion of hydrocarbon or by hydrocarbon steam-reforming.
摘要:
A process is provided for producing cold and/or heat by means of a thermal unit operating by absorption. Increased performances are obtained by using a condensable auxiliary fluid and performing the absorption in two successive steps (absorbers A.sub.20 and A.sub.21). The unit for conducting the process essentially comprises a generator (S.sub.20), a condenser (E.sub.20), an evaporator (E.sub.21) and two absorbers (A.sub.20 and A.sub.21).
摘要:
A synthesis gas for methanol production, containing hydrogen and carbon oxides, is obtained by performing, separately, a steam-reforming of hydrocarbons and a hydrocarbon combustion step: the effluents are admixed and the resultant mixture is subjected to steam-reforming.