Abstract:
A fluoride treated ceramic material is provided, the ceramic material comprising fluorinated metal oxide on its surface. A method for the preparation of such treated ceramics is also provided, the method involving exposure of the ceramic to a fluorine-containing reagent. The ceramic materials can be further functionalized so as to bond to functional ligands and/or resins. The ceramic materials can be, for example, ceramic medical implants or particulate ceramic, which can be incorporated within dental and/or orthopedic composites.
Abstract:
A temperature sensor includes a photon source, a fluorescent element and a photodetector. The fluorescent element includes a temperature-insensitive first fluorophore and a temperature-sensitive second fluorophore. The photodetector includes a first photosensor exhibiting a first spectral responsivity and a second photosensor exhibiting a second spectral responsivity. To measure a temperature of a surface, the fluorescent element may be placed adjacent to the surface and irradiated with a photon beam. First photons emitted from the first fluorophore and second photons emitted from the second fluorophore are collected. The first and second photons may be transmitted as a single dichromatic beam to the photodetector. The photosensors generate two different photodetector output signals, the ratio of which may be correlated to temperature.
Abstract:
A fluorine-containing porcelain, such as a porcelain material comprising a fluorine-doped glass, is provided for use in dental applications. The porcelain may be used to overlie at least a portion of a dental component such that an interface between the porcelain and the dental component comprises a fluorinated metal oxide. Methods for producing such fluorine-containing porcelains and for treating dental components with such fluorine-containing porcelains are also provided. The fluorine-containing porcelain may exhibit enhanced bonding to the underlying dental component such as a high strength ceramic.
Abstract:
A solid waste treatment system includes: a solid-liquid separator module configured to receive mixed solid and liquid waste and separating solid material from the mixed solid and liquid waste; an accumulator and macerator module configured to receive and macerate the solid material from the solid-liquid separator module; a drying module configured to receive and dry the macerated solid material from the accumulator and macerator module; and a combustion module configured to receive and combust the dried macerated solid material from the drying module.
Abstract:
A liquid waste treatment system includes: a baffle tank subsystem for particle settling; a preprocess tank subsystem downstream of the baffle tank subsystem; a process tank subsystem downstream of the preprocess tank subsystem; and a storage tank subsystem downstream of the process tank subsystem for the storage of treated liquid. A Microbial Fuel Cell (MFC) processing module may be included and may be inserted into the preprocess tank subsystem or implemented in a second process tank downstream of the process tank subsystem. A faster disinfection may occur in the process tank subsystem, and a slower disinfection may occur in the second process tank according to distinct respective kill curves. An electrochemical cell may be operated in a pulse mode in liquid waste in a pulsed mode.
Abstract:
A solid waste treatment system includes: a solid-liquid separator module configured to receive mixed solid and liquid waste and separating solid material from the mixed solid and liquid waste; an accumulator and macerator module configured to receive and macerate the solid material from the solid-liquid separator module; a drying module configured to receive and dry the macerated solid material from the accumulator and macerator module; and a combustion module configured to receive and combust the dried macerated solid material from the drying module.
Abstract:
A fluoride treated ceramic material is provided, the ceramic material comprising fluorinated metal oxide on its surface. A method for the preparation of such treated ceramics is also provided, the method involving exposure of the ceramic to a fluorine-containing reagent. The ceramic materials can be further functionalized so as to bond to functional ligands and/or resins. The ceramic materials can be, for example, ceramic medical implants or particulate ceramic, which can be incorporated within dental and/or orthopedic composites.
Abstract:
A liquid waste treatment system includes: a baffle tank subsystem for particle settling; a preprocess tank subsystem downstream of the baffle tank subsystem; a process tank subsystem downstream of the preprocess tank subsystem; and a storage tank subsystem downstream of the process tank subsystem for the storage of treated liquid. A Microbial Fuel Cell (MFC) processing module may be included and may be inserted into the preprocess tank subsystem or implemented in a second process tank downstream of the process tank subsystem. A faster disinfection may occur in the process tank subsystem, and a slower disinfection may occur in the second process tank according to distinct respective kill curves. An electrochemical cell may be operated in a pulse mode in liquid waste in a pulsed mode.
Abstract:
A fluoride treated medical implant, such as a dental component, is provided, the medical implant comprising fluorinated metal oxide on the substrate surface. A method for the preparation of such treated implants is also provided, the method involving exposure of the medical implant to a fluorine-containing reagent. A dental structure is also provided, which includes a first dental component comprising a fluorinated metal oxide layer on its surface, a silane coupling agent, a dental cement, and a second dental component having a surface bonded to the dental cement. An additional dental structure, which includes a first dental component comprising a fluorinated metal oxide layer on its surface, a dental cement, and a second dental component having a surface bonded to the dental cement is also provided.
Abstract:
A dental component comprising a modified porcelain veneering coating thereon is provided, wherein the porcelain veneering coating can comprise a plurality of crystalline inclusions. The crystalline inclusions can serve to strengthen the porcelain veneering coating and the dental component as a whole. A method for the preparation of such treated implants is also provided, the method involving providing a dental component; applying a porcelain slurry comprising about 5% or more by weight of an additive capable of forming a crystalline silicate phase to at least a portion of the surface of the dental component to give a coated dental component; and firing the porcelain-coated dental component.