Abstract:
To provide a sliding member having improved wear resistance, and a method of manufacturing the sliding member. A femoral head ball according to an aspect of the present disclosure includes a composite ceramic containing alumina and at least one oxide other than alumina. A surface roughness Ra of the sliding surface when the femoral head ball slides against a constituent member constituting an artificial joint is not more than 0.01 μm. The sliding surface includes a plurality of recessed portions each having an opening diameter of not more than 2 μm.
Abstract:
Described herein are methods that result in less cell death resulting from myocardial infarction than would otherwise occur in an individual who has suffered myocardial infarction. Also described are compositions useful in reducing cell death post myocardial infarction.
Abstract:
Described is a method to prepare wet foams exhibiting long-term stability wherein colloidal particles are used to stabilize the gas-liquid interface, said particles being initially inherently partially lyophobic particles or partially lyophobized particles having mean particle sizes from 1 nm to 20 μm. In one aspect, the partially lyophobized particles are prepared in-situ by treating initially hydrophilic particles with amphiphilic molecules of specific solubility in the liquid phase of the suspension.
Abstract:
The present invention provides a highly-sintered fluorapatite glass-ceramic comprising a high Ca/Al or Sr/Al mole-ratio, that possesses a microstructure that induces apatite/bone deposition.
Abstract:
A process for the preparation of ceramic dental implants having a surface for improving osseointegration, wherein the following process steps are performed for preparing such surface: —preparation of a ceramic blank having a surface; —treating at least one partial area of the surface of the ceramic blank by an ablating process that produces a surface roughness of the surface that corresponds to a treatment by sand blasting under a blasting pressure of from 1.5 bar to 8 bar and with a grain size of the blasting media used for sand blasting of from 30 μm to 250 μm; —followed by a chemical treatment of said at least one partial area of the surface of the ceramic blank treated with the ablating process; —followed by a thermal treatment of the blank whose surface has been subjected to said ablating and chemical treatments at temperatures of >125° C. > A ceramic body obtainable by the process according to the invention is also described.
Abstract:
A novel metal/ceramic hybrid material in which the void space of the ceramic is filled with metal. The metal may be bonded to the ceramic, for example by formation of a metal oxide. The metal may be introduced into the ceramic as small particles in a suspension then heated to melt the metal, allowing bonding to the ceramic or better filling of the void space. The hybrid material may be used in a variety of applications.
Abstract:
The present invention relates to ceramic precursor material exhibiting injectability arid properties that make the material suitable as a carrier material used in drug delivery. According to the invention this is accomplished by selecting a microstructure based on pre-reacted phases and after injection established phases, which contain anti-infective and/or anti-inflammatory drugs. The present invention also relates to a cured ceramic material and a method of manufacturing said cured material. The precursor and the cured ceramic material according to the present invention can suitably be used for filling orthopaedic cavities and other bone voids.
Abstract:
A novel metal/ceramic hybrid material in which the void space of the ceramic is filled with metal. The metal may be bonded to the ceramic, for example by formation of a metal oxide. The metal may be introduced into the ceramic as small particles in a suspension then heated to melt the metal, allowing bonding to the ceramic or better filling of the void space. The hybrid material may be used in a variety of applications.
Abstract:
The invention relates to an implant for at least partially creating, recreating or stabilizing vertebral bodies or tubular bones. In said implant, a metallic, nonmetallic or ceramic hollow body is coated with an active substance complex or comprises said active substance complex. This active substance complex comprises the following components which differ from one another and which are specifically adapted for creating bone: at least one structural component based on extracellular material which is specifically adapted to the cells of the bone which is to be created, at least one recruiting component, at least one adhesion component, and at least one growth and/or maturation component.
Abstract:
Direct metal deposition (DMDtm) is used to fabricate customized three-dimensional artificial joint components, thereby leading to enormous savings in terms of labor, cost and lead-time. The DMD fabrication process is interfaced directly to digital data derived through CAT scans, MRI or X-ray topography. A computer-aided design (CAD) file is then constructed in accordance with the digital data, and a tool path is generated as a function of the CAD file. The desired implant, or a portion thereof (such as just the outer surface) is then be fabricated by depositing material increments along the tool path using direct metal deposition (DMD). The process may be used for both solid and scaffold structure suitable to bone ingrowth or ongrowth. In the preferred mbodiment, a closed-loop DMD process is used wherein the size of the increments are controlled through optical monitoring. The materials forming the implant may include one or more metals, polymers, or ceramics, including zirconia or alumina. The same DMD process may also be used to fabricate the implant out of different materials, inlcuding a combination metals, ceramics, or polymers. As a further advantage, one or more sensors may be embedded into the implant during fabrication for diagnostic or data-acquisition purposes.