Abstract:
A process for binding particulate water-absorbing acid-functional polymers to a carrier material by means of compounds comprising amino groups, which comprises contacting the carrier material with particulate water-absorbing acid-functional polymers whose acid groups have been 0 to not more than 55 mol % neutralized with alkali metal and/or ammonium bases and then raising the degree of neutralization of these polymers to not less than 60 mol % by treatment with amino-containing compounds. The use of compounds comprising amino groups and selected from the group of the compounds consisting of the alkanolamines and compounds which contain ethyleneimine and/or vinylamine units to neutralize and bind particulate water-absorbing acid-functional polymers neutralized 0 to not more than 55 mol % with alkali metal and/or ammonium bases to a carrier material.
Abstract:
The invention relates to a process for producing a water-absorbing resin by polymerization of a reaction mixture comprising at least one hydrophilic monomer and, if appropriate, at least one crosslinker in a reactor, which comprises admixing the reaction mixture with at least one first portion of a particulate additive before the reaction mixture has reached a residence time of 40% of the overall residence time in the reactor and with at least one second portion of a particulate additive when the reaction mixture has reached a residence time of 45% or more of the overall residence time in the reactor, the additive being selected from water-absorbing resin powders, fillers and mixtures thereof, the total solids content of monomer and additive being in the range from 30% to 60% by weight, the amount of additive being in the range from 5% to 50% by weight, based on the monomers, and the weight ratio of the first portion to the second portion of the additive being in the range from 10:1 to 1:5. The resin powder is recycled fine-sized material for example. Not only the residual monomer content, specifically the residual crosslinker content, but also the level of extractables in the water-absorbing resin are reduced by the method of addition described. A high fraction of additives can be incorporated without the properties of the water-absorbing resin obtained being adversely affected. The additives enter a sufficiently firm bond with the resin, so that no excessive dusting occurs on exposure to mechanical stress.
Abstract:
The present invention relates to novel (meth)acrylic esters of polyalkoxylated trimethylolpropane of the formula where EO is O—CH2-CH2- PO is independently at each instance O—CH2-CH(CH3)- or O—CH(CH3)-CH2- n1, n2 and n3 are independently 4, 5 or 6, n1+n2+n3 is 14, 15 or 16, m1, m2 and m3 are independently 1, 2 or 3, m1+m2+m3 is 4, 5 or 6, R1, R2 and R3 are independently H or CH3, a simplified process for preparing these esters and the use of reaction mixtures thus obtainable.
Abstract:
The present invention relates to novel (meth)acrylic esters of polyalkoxylated glycerol, a simplified process for preparing these esters and the use of reaction mixtures thus obtainable.
Abstract:
Hydrophobic, cross-linked absorbent polymers, insoluble in water, in the form of microbeads , based on silica and acrylic acid partially salified by an alkali metal, are obtained by a polymerization process in a water-in-oil suspension in which an aqueous phase obtained extemporaneously from (1), an aqueous solution containing one or more hydrosoluble polymerization initiators, which are free radical generators, and (2), an aqueous phase containing at a concentration of 50.+-.15% by weight a mixture of by weight 2 to 25% of colloidal silica and 98 to 75% of acrylic acid of which 60 to 80 is salified by an alkaline metal, is introduced slowly, under agitation, into a totally deoxygenated oil phase maintained at boiling point and containing a protective colloid, with an aqueous phase to oil phase weight ratio of between 0.8 and 1.2, then when the polymerization reaction is finished, 15 to 55% of the water present is eliminated by azeotropic distillation with recycling of the organic solvent, then 0.01 to 0.06% in molar proportions relative to the monomers of ethyleneglycol diglycidyl ether is introduced into the reaction mixture at boiling point and azeotropic distillation of the residual water is continued until a suspension is obtained which has a dry content of 85.+-.10% and finally the desired polymer is isolated by filtration; use as absorbent compound and in a sanitary article.
Abstract:
Disclosed is a method for the continuous production of crosslinked, particulate, gel-type polymers by copolymerizing a) water-soluble, monoethylenically unsaturated monomers, b) 0.001 to 5 molar percent of monomers containing at least two polymerizable groups, the percentage being relative to the monomers (a), in a mixer. The substances that are added at the beginning of the kneader are conveyed in an axial direction towards the end of the mixer. The inventive method is characterized in that at least one of the following conditions is met: i) the filling level in the kneader mixer is at least 71 percent; ii) the water-soluble, monoethylenically unsaturated monomers contain up to 150 ppm of a semicyclic ether of a hydroquinone; iii) the temperature in the polymerization zone exceeds 65° C.; iv) the kneader has a remixing rate of less than 0.33.
Abstract:
The present invention relates to novel mixtures of (meth)acrylic esters of polyalkoxylated trimethylolpropane of the formula where AO is for each AO independently at each instance EO, PO or BO where EO is O—CH2-CH2- PO is independently at each instance O—CH2-CH(CH3)- or O—CH(CH3)-CH2- BO is independently at each instance O—CH2-CH(CH2-CH3)- or O—CH(CH2-CH3)-CH2- p1+p2+p3 is 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74 or 75, R1, R2 and R3 are independently H or CH3, a simplified process for preparing these ester mixtures and the use of reaction mixtures thus obtainable.
Abstract:
The present invention relates to water-swellable, hydrophilic polymer compositions which can be prepared by free-radical (co)polymerization of one or more hydrophilic monomers in the presence of starch and/or chemically modified starch, wherein a free-radical initiator which forms three or more free radical sites per molecule is used.
Abstract:
The present application relates to a process for the preparation of porous, hydrophilic, highly swellable hydrogels, which comprises freeze-drying hydrophilic, highly swellable hydrogels which have been swollen with water.
Abstract:
A process for pneumatic delivery of water-absorbing polymer particles, the compressor used for pneumatic delivery having a steep characteristic and the initial gas rate in the delivery corresponding to a Froude number of from 10 to 18.