Abstract:
Disclosed are a non-feeding re-radiating repeater and a method for manufacturing the same. The repeater includes: a dielectric substrate having a flat plate shape or a curved shape; and one or more unit cells formed on the dielectric substrate, in which each of the unit cells includes an arrangement of a plurality of conductor patterns. When electromagnetic waves incident from a first direction, the unit cells may re-radiate the electromagnetic waves in a second direction which is different from the first direction.
Abstract:
The present disclosure relates to a communication technique for combining a 5G communication system for supporting a higher data transmission rate than a 4G system with an IoT technology, and a system therefor. The present disclosure can be applied to 5G communication technology and IoT related technology-based intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety related services, etc.). A method in which a transmitter estimates a position in a communication system according to an embodiment of the present disclosure comprises the steps of: transmitting, to a receiver, a magnetic field signal generated from a single coil included in the transmitter; and receiving, from the receiver, position information estimated on the basis of a received signal strength of the magnetic field signal.
Abstract:
According to various embodiments of the present disclosure, an electronic device may include: an array antenna including a plurality of first radiating conductors that transmit or receive a wireless signal in a first frequency band and are arranged on a circuit board; and a lens unit including at least one lens disposed on a housing of the electronic device to correspond to the first radiating conductors. The lens unit may refract or reflect a wireless signal transmitted/received through each of the first radiating conductors. The electronic device as described above may be variously implemented according to embodiments. For example, a portion of the lens unit may transmit/receive a wireless signal in a frequency band that is different from the frequency band of the wireless signal transmitted/received by the first radiating conductors.
Abstract:
An electronic device may include a circuit board, radiators disposed on the circuit board, and provided with a first feeding signal to transmit or receive a wireless signal in a first frequency band; and a ground disposed on the circuit board to provide a reference potential for the radiators. The radiators and a whole or a portion of the ground may be provided with an additional feeding signal to transmit or receive a wireless signal in various frequency bands that are lower than the first frequency band.
Abstract:
Provided is an electronic device which includes a body portion including a first radiator and a wearing portion including at least one second radiators, in which the second radiators form capacitive coupling with the first radiator or a ground portion provided in the body portion, thereby providing stable operation characteristics of the first radiator. The electronic device may be implemented variously according to an embodiment.
Abstract:
A planar antenna apparatus is provided. The apparatus includes a first radiation unit configured to transmit a signal, a first feed unit configured to feed a current to the first radiation unit and apply the signal to be transmitted to the first radiation unit, a first Radio Frequency (RF) ground to which a plurality of antenna elements are grounded; and a via that connects the first radiation unit to the first RF ground, wherein all of the first radiation unit, the first feed unit, the first RF ground, and the via are disposed on a first plane, and wherein a capacitance value between the first radiation unit and the first feed unit and an inductance value determined by a length and a width of the radiation unit are set as values that cause a resonant frequency in a specific frequency band to be a preset value.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to an assist device for an electronic device including an antenna, wherein the assist device includes a second unit including a second antenna, wherein the second antenna configured to generate capacitance with at least one of a first antenna in a first unit and an internal antenna of the electronic device. Further, the present invention also includes embodiments different from the above-described embodiment.
Abstract:
According to an embodiment of the present invention, a reradiation repeater may comprise a dielectric substrate, a ground conductor provided on a surface of the dielectric substrate, and a plurality of unit cells provided on another surface of the dielectric substrate, wherein the unit cells reradiate radio waves in the same direction by directing the radio waves which are incident onto the unit cells at different angles to a same direction. The reradiation repeater may facilitate to select, e.g., an installation location and secure a good reradiation capability even when the installation environment is changed (e.g., a variation in the installation location of base station facility), contributing to coverage of a shadow zone. The reradiation repeater may be implemented in various manners according to embodiments of the present invention.
Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Disclosed are an apparatus and method for generating distress signals in a mobile device. The apparatus comprises a coil antenna for NFC communication, a first communication circuit configured to perform the NFC communication using the coil antenna in a normal mode, a second communication circuit transmitting a distress signal having a rescue-dedicated frequency through the coil antenna in a distress mode, a switch connecting the coil antenna to the first communication circuit or the second communication circuit, and a processor determining the normal mode or the distress mode to control the switch.
Abstract:
A memory device includes cell transistors on active regions defined by a device isolation layer on a substrate such that each cell transistor has a buried cell gate and a junction portion adjacent to and at least partially distal to the substrate in relation to the buried cell gate, an insulation pattern on the substrate and covering the cell transistors and the device isolation layer, and a bit line structure on the insulation pattern and connected to the junction portion. The bit line structure includes a buffer pattern on the pattern and having a thermal oxide pattern, a conductive line on the buffer pattern, and a contact extending from the conductive line to the junction portion through the buffer pattern and the insulation pattern.