Abstract:
An integrated circuit (IC) having a scan compression architecture includes decompression logic coupled between test access input and a block of IC elements (e.g. flip-flops) coupled together to define a plurality of scan paths. The block of IC elements includes an initial data selector at an initial position of each of the scan paths, and an additional data selector downstream within at least one of the scan paths and configured to reconfigure an order of the IC elements within the at least one scan path. Compression logic is coupled between the block of IC elements and a test access output.
Abstract:
An integrated circuit includes an N number of functional logic blocks, with N being greater than or equal to two, and clock staggering test circuitry. When the clock staggering test circuitry is in a shift mode, N staggered shift clock signals are generated for respective ones of the N functional logic blocks. Each of the N staggered shift clock signals has a frequency equal to a frequency of an external test clock signal divided by M, where M is greater than or equal to N. The peak power of the integrated circuit is reduced during the shift mode as a result of the staggered shift clock signals.
Abstract:
An integrated circuit includes an N number of functional logic blocks, with N being greater than or equal to two, and clock staggering test circuitry. When the clock staggering test circuitry is in a shift mode, N staggered shift clock signals are generated for respective ones of the N functional logic blocks. Each of the N staggered shift clock signals has a frequency equal to a frequency of an external test clock signal divided by M, where M is greater than or equal to N. The peak power of the integrated circuit is reduced during the shift mode as a result of the staggered shift clock signals.
Abstract:
An integrated circuit (IC) having a scan compression architecture includes decompression logic coupled between test access input and a block of IC elements (e.g. flip-flops) coupled together to define a plurality of scan paths. The block of IC elements includes an initial data selector at an initial position of each of the scan paths, and an additional data selector downstream within at least one of the scan paths and configured to reconfigure an order of the IC elements within the at least one scan path. Compression logic is coupled between the block of IC elements and a test access output.
Abstract:
The On-Chip Clock (OCC) circuit is for testing an integrated circuit having logic blocks connected in scan chains. An OCC controller is configured to receive a plurality of clock signals and output a plurality of shift/capture clock signals for use by the scan chains of logic blocks, the plurality of shift/capture clock signals including at least two consecutive at-speed capture clock pulses. An OCC monitor is configured to provide a verification of OCC operation based upon the at least two consecutive at-speed capture clock pulses. The OCC monitor may include a plurality of registers configured to provide delayed pulses based upon the at least two consecutive at-speed capture clock pulses, a counter configured to count differences between the delayed pulses, and an output register coupled to the counter and configured to provide a static data verification (e.g. output on an integrated circuit pad) for the test engineer.
Abstract:
An integrated circuit (IC) having a scan compression architecture includes decompression logic coupled between test access input and a block of IC elements (e.g. flip-flops) coupled together to define a plurality of scan paths. The block of IC elements includes an initial data selector at an initial position of each of the scan paths, and an additional data selector downstream within at least one of the scan paths and configured to reconfigure an order of the IC elements within the at least one scan path. Compression logic is coupled between the block of IC elements and a test access output.
Abstract:
An integrated circuit (IC) having a scan compression architecture includes decompression logic coupled between test access input and a block of IC elements (e.g. flip-flops) coupled together to define a plurality of scan paths. The block of IC elements includes an initial data selector at an initial position of each of the scan paths, and an additional data selector downstream within at least one of the scan paths and configured to reconfigure an order of the IC elements within the at least one scan path. Compression logic is coupled between the block of IC elements and a test access output.
Abstract:
A semiconductor chip includes on-chip clock controllers (OCCs) capable of synchronizing multiple clock signals on the device. Each OCC controller receives a scan enable signal and a unique clock signal that is generated from one or more clock generators. The OCC receiving the slowest generated clock signal passes it through internal meta-stability registers and provides an external synchronization signal to the OCCs handling faster clock signals. These faster-clock OCCs can use the external synchronization signal to synchronize their clocks and generate testing clock pulses.
Abstract:
A semiconductor chip includes on-chip clock controllers (OCCs) capable of synchronizing multiple clock signals on the device. Each OCC controller receives a scan enable signal and a unique clock signal that is generated from one or more clock generators. The OCC receiving the slowest generated clock signal passes it through internal meta-stability registers and provides an external synchronization signal to the OCCs handling faster clock signals. These faster-clock OCCs can use the external synchronization signal to synchronize their clocks and generate testing clock pulses.