Abstract:
The inventive concept provides apparatuses and methods for monitoring semiconductor fabrication processes in real time using polarized light. In some embodiments, the apparatus comprises a light source configured to generate light, a beam splitter configured to reflect the light toward the wafer being processed, an objective polarizer configured to polarize the light reflected toward the wafer and to allow light reflected by the wafer to pass therethrough, a blaze grating configured to separate light reflected by the wafer according to wavelength, an array detector configured to detect the separated light and an analyzer to analyze the three-dimensional profile of the structure/pattern being formed in the wafer.
Abstract:
A method of monitoring a semiconductor fabrication process including forming a barrier pattern on a substrate, forming a sacrificial pattern on the barrier pattern, removing the sacrificial pattern to expose a surface of the barrier pattern, generating photoelectrons by irradiating X-rays to a surface of the substrate, and inferring at least one material existing on the surface of the substrate by collecting and analyzing the photoelectrons may be provided.
Abstract:
A wafer inspection apparatus including a derivation unit configured to derive a first polar coordinate set and a second polar coordinate set using a latin hypercube sampling, the first and second polar coordinate sets not overlapping each other, an inspection unit configured to perform defect inspections of a plurality of wafers using the first and second polar coordinate sets, a support unit configured to support the wafers, and an calculation unit configured to combine a defect inspection result using the first polar coordinate set with a defect inspection result using the second polar coordinate set may be provided.
Abstract:
Methods and apparatuses for measuring parameters of integrated circuit devices may be provided. The methods may include performing detecting operations on samples to obtain a set of data. Each detecting operation may include irradiating a light beam to the samples using a light irradiation part and detecting reflected light from the samples using a light detector. The samples may have values of a parameter different from one another. The method may also include obtaining a principal component based on the set of data and obtaining a regression model for the parameter using the principal component and values of the parameter of the samples.