Abstract:
Methods and apparatuses are provided for measuring a vital signal by an electronic device. A motion of the electronic device is detected. It is determined whether an amount of the motion is less than or equal to a threshold. At least one vital signal is measured at least once if the amount of the motion is less than or equal to the threshold. A parameter of the at least one vital signal is analyzed. The parameter is converted into vital information.
Abstract:
A method and device for measuring blood glucose are provided. The device includes a strip receiving part having a plurality of pins therein, the pins being arranged in such a manner that at least one of the pins contacts at least one electrode formed in a blood glucose measurement strip when the blood glucose measurement strip is inserted into the strip receiving part; and a controller configured to identify a type of the blood glucose measurement strip inserted into the strip receiving part and to control application of a testing voltage configured in response to the identified type of the blood glucose measurement strip to each pin of the strip receiving part.
Abstract:
A bio information measuring device is provided. The bio information measuring device includes a sensor portion and a needle portion including a plurality of needles projecting from a plurality of openings formed in a surface of the sensor portion. The plurality of needles are configured to pierce tissue, wherein the plurality of needles include a biocompatible organic material which includes an enzyme member that reacts with an analysis material and a conductive polymer for transferring an electrical signal generated as a result of a reaction of the enzyme member with the analysis material.
Abstract:
A biosensor is provided. The biosensor includes a lower substrate including an electrode unit, an insulation layer disposed on the lower substrate, a first spacer layer disposed on the insulation layer over the electrode unit, an enzyme unit disposed on the first spacer layer, a second spacer layer disposed on the enzyme unit, such that the enzyme unit is interposed between the first and second spacer layers, and an upper substrate disposed on the second spacer layer. The electrode unit includes a working electrode, and a reference electrode and a counter electrode that surround a periphery of the working electrode, facing the working electrode.
Abstract:
Disclosed is a method and system for analyzing stress and managing stress by using a mobile electronic apparatus and a data management server. The method includes: generating bio-signal pattern information upon periodically receiving a bio-signal from a bio-signal measuring device connected to each of a plurality of unspecified individuals, and forming reference information for stress analysis based on received answers to each of a plurality of questions for checking a stress level; receiving bio-signal pattern information from a bio-signal measuring device connected to a specified user; and determining a stress level corresponding to the bio-signal pattern information of the specified user based on the reference information.
Abstract:
A biosensor is provided. The biosensor includes a base plate including a detector configured to detect a sample through an electrode, an insulation layer disposed on a top surface of the base plate, a top plate mounted over the base plate and including a sample inlet that introduces the sample onto the detector, and a spacer interposed between the top plate and the insulation layer and forming a chamber.
Abstract:
A wearable body composition analyzer according to various embodiments of the present disclosure may include an induction part for inducing secretion of bodily liquid while being in contact with a body part, a collection part that collects the bodily liquid secreted, a sensor part that detects a body composition from the bodily liquid collected, and a wearable part to which the induction part and the collection part is detachably attached, wherein the wearable part may be worn on a body. The above-described wearable body composition analyzer may be implemented variously according to embodiments.
Abstract:
A wearable body composition analyzer according to various embodiments of the present disclosure may include an induction part for inducing secretion of bodily liquid while being in contact with a body part, a collection part that collects the bodily liquid secreted, a sensor part that detects a body composition from the bodily liquid collected, and a wearable part to which the induction part and the collection part is detachably attached, wherein the wearable part may be worn on a body. The above-described wearable body composition analyzer may be implemented variously according to embodiments.
Abstract:
An optical sensor and an electronic device having an optical sensor. The optical sensor includes: an optical waveguide containing a photochromic material; a light emitter that emits visible light to be incident on the optical waveguide; and a light receiver that detects the visible light emitted from the light emitter and progressing through the optical waveguide. A transmittance of the optical waveguide in relation to the visible light may be changed by the photochromic material as the optical waveguide is exposed to UV light. The optical sensor and the electronic device having the same may be variously implemented according to exemplary embodiments.
Abstract:
A blood glucose meter is provided. The blood glucose meter includes a body of the blood glucose meter, a lancing unit which is provided at one side of the body of the blood glucose meter and includes a lancet to puncture a skin in order to sample blood of a user, a sensor strip unit which is provided at another side of the body of the blood glucose meter which is different than the one side of the body at which the lancing unit is provided, the sensor strip unit being configured to sample the blood of the user, and a measurement unit which measures the blood sampled by the sensor strip unit. The blood glucose meter has the measurement unit which is integrally assembled with the body of the blood glucose meter and includes the lancing unit having the lancet and the sensor strip unit.