Abstract:
A method for using at least one unlicensed band channel by an evolved Node B (eNB) in a cellular wireless communication system is provided. The method includes receiving unlicensed band channel information from at least one unlicensed band-enabled device that uses an unlicensed band channel, selecting the unlicensed band channel to be used for cellular communication based on the received unlicensed band channel information, and activating the selected unlicensed band channel.
Abstract:
Methods and apparatuses for processing charging in wireless communication systems and methods and apparatuses for providing providers' policy services through the charging process are provided. The method includes identifying, by an evolved Node B (eNB), a radio access technology (RAT) used by a user equipment (UE), and generating, by the eNB, charging information per use of a communication service by the UE according to the identified radio access technology (RAT). The method includes identifying, by an eNB, a RAT used by a UE, generating, by the eNB, charging-related information including RAT information indicating the identified RAT for a charging process per use of a communication service by the UE, and transmitting, by the eNB, the charging-related information to a network entity involved with the charging process.
Abstract:
Disclosed is a 5G or pre-5G communication system. To this end, an electronic device transmits a request message to a server through each of a plurality of communication paths at least based on a multi-radio access technology, and receives a video segment from the server through each of the plurality of communication paths according to the request message. The electronic device estimates a transmission quality at each communication path on the basis of video segments received for each of the plurality of communication paths at a radio search point satisfying at least one preset condition. The electronic device can determine, by the transmission quality estimated according to each of the plurality of communication paths and the preset reference transmission quality, one communication mode, among a plurality of communication modes, for designating at least one communication path for supporting the video streaming, among the plurality of communication paths.
Abstract:
Embodiments of the disclosure relate to a fifth generation (5G) or pre-5G communication system for supporting a higher data transmission rate beyond the fourth generation (4G) communication system, such as long term evolution (LTE) are provided. The method for managing a channel in a wireless local area network (WLAN) system includes detecting a radar signal and determining an optimal channel based on history information of a channel and the detected radar signal.
Abstract:
The present invention relates a 5-th generation (5G) or pre-5G communication system provided to support a higher data transmission rate beyond a 4th-generation (4G) communication system such as long term evolution (LTE). The present invention relates to a method for transmitting or receiving a signal in a mobile communication network, the method comprising the steps of: detecting a traffic characteristic of a traffic provided to a terminal; determining, on the basis of the traffic characteristic, a first radio access technology (RAT) to be applied to an uplink of the terminal and a second RAT to be applied to a downlink of the terminal; and controlling the uplink and the downlink of the terminal on the basis of the first RAT and the second RAT.
Abstract:
The present disclosure relates to obtaining AP information or information on a channel where the AP is positioned from a neighboring mobile terminal that has recently performed AP scanning and re-attempting to scan based on the obtained information. According to an embodiment of the present disclosure, a method for scanning an access point (AP) in a wireless local area network (LAN) system comprises performing first WLAN scanning by a first mobile terminal, transmitting a request for WLAN AP information to a second mobile terminal that has previously performed WLAN AP scanning, receiving the WLAN AP information from the second mobile terminal, and performing second WLAN scanning based on the WLAN AP information.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. Disclosed is a method for providing a data service in a global virtual network provider of a wireless communication system, comprising the steps of: determining a wireless network for providing a data service on the basis of at least one of a service type, service quality, and price information required by a user; and transmitting, to a terminal, wireless network information including the determined wireless network, wherein the terminal and the determined wireless network are temporarily connected before the wireless network is determined.
Abstract:
The present disclosure relates to a communication method and a system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as a smart home, a smart building, a smart city, a smart car, a connected car, health care, digital education, a smart retail, and security and safety services. A method and an apparatus for communicating voice calls in a communication system are provided. The apparatus includes a first terminal that is a representative terminal configured to receive a voice call sets up a function for using a call forwarding service with a second terminal that is an auxiliary terminal, when the first terminal detects an occurrence of an event complying with a certain criterion for performing a call forwarding service, to determine whether a call forwarding service with the second terminal is being executed, and to execute, unless the call forwarding service is being executed, the call forwarding service and to transfer a voice call received by the first terminal to the second terminal.
Abstract:
A method for transmitting a status report in a communication system based on multiple Radio Access Technologies (RATs) is provided. The method includes, when missing sequence numbers are detected from sequence numbers of packets stored in a reception buffer, identifying whether there are one or more sequence numbers which have not been received due to a transmission delay time difference between the multiple RATs in the missing sequence numbers, and when there are one or more sequence numbers in the missing sequence numbers, delaying transmission of the status report.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system for supporting higher data rates beyond 4th-generation (4G) communication systems such as a long term evolution (LTE) system. The disclosure includes a first evolved node B (eNB) in a communication system supporting dual connectivity. The first eNB includes a controller configured to detect that a path between a second eNB and a terminal is blocked, and a transmitter configured to transmit, to the terminal, a first data unit of a plurality of data units to be transmitted through the path between the second eNB and the terminal.