Abstract:
A semiconductor device includes a stack structure on a substrate, the stack structure including interlayer insulating layers and first gate electrodes alternately stacked on each other, a semiconductor layer in an opening penetrating through the stack structure, a first dielectric layer between the semiconductor layer and the stack structure, and a lower pattern closer to the substrate than to the first gate electrodes in the stack structure, the lower pattern including a first surface facing the first dielectric layer, and a second surface facing the stack structure, the second surface defining an acute angle with the first surface, wherein the first dielectric layer includes a first portion facing the stack structure, and a second portion facing the first surface of the lower pattern, the second portion having a thickness greater than a thickness of the first portion.
Abstract:
A stack structure includes conductive layer patterns and interlayer insulating layer patterns alternately stacked on one another. A channel hole penetrates the stack structure. A dielectric layer is disposed on a sidewall of the channel hole. A channel layer is disposed on the dielectric layer and in the channel hole. A passivation layer is disposed on the channel layer and in the channel hole. The channel layer is interposed between the passivation layer and the dielectric layer. An air gap is surrounded by the passivation layer. A width of the air gap is larger than a width of the passivation layer.
Abstract:
A heat exchanger includes a refrigerant pipe through which a refrigerant flows, and a plurality of fins coupled to an outer circumference surface of the refrigerant pipe, wherein each fin includes a first region disposed upstream with respect to an air flow direction, and a second region which forms a boundary with the first region and is disposed downstream with respect to the air flow direction, and wherein the first region and the second region have different surface energies in order to prevent formation of condensation water on the fin.
Abstract:
A semiconductor device includes a stack structure on a substrate, the stack structure including interlayer insulating layers and first gate electrodes alternately stacked on each other, a semiconductor layer in an opening penetrating through the stack structure, a first dielectric layer between the semiconductor layer and the stack structure, and a lower pattern closer to the substrate than to the first gate electrodes in the stack structure, the lower pattern including a first surface facing the first dielectric layer, and a second surface facing the stack structure, the second surface defining an acute angle with the first surface, wherein the first dielectric layer includes a first portion facing the stack structure, and a second portion facing the first surface of the lower pattern, the second portion having a thickness greater than a thickness of the first portion.
Abstract:
One aspect of the present invention is to provide an electronic apparatus which is configured to provide a color writing function by means of the physical force of an external input means, and a control method thereof. More particularly, the present invention is to provide an electronic apparatus equipped with a plurality of liquid crystal panels in an electronic apparatus so that a plurality of colors can be written by the physical force of an external input means, and a control method thereof.
Abstract:
The present disclosure is directed to providing to a smart window system capable of controlling a state of a display element (e.g., at least one of transparency, color, pattern, gradation degree, and displayed information) through various kinds of input devices and a control method thereof.In accordance with one aspect of the present disclosure, a smart window system may include a display element; an input device configured to receive a control command for the display element; and a controller configured to determine at least one of transparency, color, pattern, and gradation of the display element and information displayed on the display element on the basis of the control command.
Abstract:
A semiconductor device includes a stack structure on a substrate, the stack structure including interlayer insulating layers and first gate electrodes alternately stacked on each other, a semiconductor layer in an opening penetrating through the stack structure, a first dielectric layer between the semiconductor layer and the stack structure, and a lower pattern closer to the substrate than to the first gate electrodes in the stack structure, the lower pattern including a first surface facing the first dielectric layer, and a second surface facing the stack structure, the second surface defining an acute angle with the first surface, wherein the first dielectric layer includes a first portion facing the stack structure, and a second portion facing the first surface of the lower pattern, the second portion having a thickness greater than a thickness of the first portion.