Abstract:
An example display driving integrated circuit includes a gamma voltage generator, a source driver, gamma lines, a first transistor, and a second transistor. The gamma voltage generator generates gamma voltages. The source driver generates data signals based on the gamma voltages. The gamma lines connect the gamma voltage generator with the source driver, and transmit the gamma voltages. The first transistor and the second transistor connect to a first end and a second end of a first gamma line of the gamma lines. The first transistor includes a first gate for receiving a first signal. The second transistor includes a second gate for receiving a second signal. The first signal and the second signal are complementary to each other.
Abstract:
A gradation voltage generator for applying a gradation voltage according to gamma characteristics of a display panel includes a reference gamma selector that receives a maximum reference voltage, a minimum reference voltage, and a first reference voltage, and selects and outputs a maximum gamma voltage and a minimum gamma voltage from among voltages between the maximum reference voltage and the minimum reference voltage, wherein when the maximum reference voltage changes, the minimum gamma voltage is compensated by a difference the changed maximum reference voltage and the first reference voltage and a gamma curve controller that receives the maximum gamma voltage and the minimum gamma voltage, and generates and outputs a plurality of gradation voltages.
Abstract:
The present disclosure relates to a display driver integrated circuit and a display device. An example of the display driver integrated circuit includes a source driver and a timing controller. The source driver is configured to output a data voltage based on an image data to a first source line and a second source line. The timing controller is configured to receive first data and second data sequentially input to a first source channel that corresponds to the first source line, receive third data and fourth data sequentially input to a second source channel that corresponds to the second source line, perform an operation on the first data and the second data to generate a first change value, perform an operation on the third data and the fourth data to generate a second change value, and based on the first change value and the second change value, determine whether to toggle an output enable signal on an output of the second data in the first source line and an output of the fourth data in the second source line.
Abstract:
A gamma adjustment circuit includes: a first node; a second node; a first decoder to which a first voltage signal and a second voltage signal are provided and which outputs either one of the first voltage signal and the second voltage signal as a third voltage signal; an amplifier receiving the third voltage signal as a positive input and outputting a fourth voltage signal; a second decoder receiving the fourth voltage signal and outputting the provided fourth voltage signal as a fifth voltage signal to one of the first and second nodes; a third decoder connected to the first and second nodes, receives the fifth voltage signal from one of the first and second nodes, and outputs the fifth voltage signal to a negative input terminal of the amplifier as a sixth voltage signal; and a first resistor connected between the first node and the second node.
Abstract:
A display driving device includes a first source amplifier that receives first display data and supplies a first pixel voltage to a first pixel based on the received first display data, and a second source amplifier that receives second display data and first control data and supplies a second pixel voltage to a second pixel based on the received second display data and first control data. The second source amplifier has a first stage in which a first process is performed on an input signal based on the second display data, and a second stage in which a second process is performed on the first processed input signal to output the second pixel voltage. The first source amplifier may be configured to conditionally supply the first pixel voltage to the second pixel.
Abstract:
An electronic device includes a first source group and a second source group, each of which includes a plurality of source channels, and a gamma block that receives first to 2i-th initial voltages (i being an integer of 1 or more), outputs first to 2i-th intermediate voltages by amplifying the first to i-th initial voltages, and outputs first to i-th gamma voltages to the first source group by buffering the first to 2i-th intermediate voltages, and a first buffer block that receives the first to 2i-th intermediate voltages from the gamma block and buffers the first to 2i-th intermediate voltages so as to be output to the second source group, and the gamma block may include a first resistor string including a plurality of resistors connected between nodes from which the first to i-th gamma voltages are output.
Abstract:
Disclosed is a gamma amplifier which includes a first amplification device that receives a first input signal during a first track period in a first time period, compensates for a first offset voltage from the first input signal during a first compensation period in the first time period, and generates a first output signal during a second time period after the first time period based on a control signal, and a second amplification device that receives a second input signal during a second track period in the second time period, compensates for a second offset voltage from the second input signal during a second compensation period in the second time period, and generates a second output signal during a third time period after the second time period based on the control signal and processing circuitry configured to generate the control signal.
Abstract:
A display driver includes first and second level shifters, respectively receiving a digital signal's most significant bit (MSB) and the digital signal's non-MSB. The first level shifter includes a first input terminal, a first output terminal via which a signal input to the first input terminal is output, a second input terminal, and a second output terminal via which a signal input to the second input terminal is output. The second level shifter includes a third input terminal, a third output terminal via which a signal input to the third input terminal is output, a fourth input terminal, and a fourth output terminal via which a signal input to the fourth input terminal is output. The first input terminal receives an inverted MSB, the second input terminal receives the MSB, the third input terminal receives the non-MSB, and the fourth input terminal receives the inverted non-MSB.
Abstract:
A source driving circuit of a display device includes a plurality of unit driving circuits configured to drive a plurality of connection nodes connected to a display panel. Each unit driving circuit includes a plurality of driver circuits and output switches. The driver circuits perform analog-conversion and amplification operations on a plurality of digital data signals to generate a plurality of analog data signals. The output switches are connected in parallel between the driver circuits and a corresponding connection node among the plurality of connection nodes. The output switches transfer the plurality of analog data signals alternately to the corresponding connection node. Each one of the plurality of connection nodes may be driven by more than one of the plurality of driver circuits. The source settling time is reduced and performance of the display device is enhanced by disposing a plurality of unit driving circuits to each connection node.
Abstract:
Provided are an output buffer circuit having an amplifier offset compensation function and a source driving circuit including the output buffer circuit. The output buffer circuit may include a plurality of channel amplifiers, each of which is configured to adjust an amount of current flowing through transistors connected to at least one of a non-inverted input terminal and an inverted input terminal of a differential input unit to compensate an amplifier offset, and adjust buffer input voltage signals to generate output voltage signals.