Abstract:
A wireless power transmission apparatus includes a source resonator configured to transmit an output power from which a harmonic component has been cancelled to a wireless power reception apparatus by resonating with a target resonator of the wireless power transmission apparatus, and a resonant power generator configured to differentially input a first input signal and a second input signal to the source resonator, and cancel the harmonic component of the output power.
Abstract:
An electronic device is provided. The electronic device includes a housing and a first coil disposed in the housing and wound around a space formed inside. The housing includes a front cover and a rear cover. The rear cover includes a hole located in a first region of the rear cover that corresponds to the space of the first coil, a first slit that extends from an edge of the rear cover to the hole, and a second slit spaced apart from the first slit and extending from the edge. One end of the second slit is located in a second region of the rear cover that corresponds to the first coil. In addition, various other embodiments recognized through the present specification are possible.
Abstract:
A dual antenna for wireless communication transmission (WPT) and near field communication (NFC) includes a loop antenna, and a dual loop antenna disposed at an inside and an outside of the loop antenna.
Abstract:
An apparatus configured to transmit power, and transceive data, using mutual resonance, includes a power transmitter configured to wirelessly transmit power to a device, using a power transmission frequency as a resonant frequency. The apparatus further includes a communication unit configured to transceive data to and from the device, using a communication frequency as a resonant frequency. The apparatus further includes a controller configured to determine a charging state of the device based on the data received from the device, and control an amount of the power based on the charging state.
Abstract:
A dual antenna for wireless communication transmission (WPT) and near field communication (NFC) includes a loop antenna, and a dual loop antenna disposed at an inside and an outside of the loop antenna.
Abstract:
A power transmitting unit is provided. The power transmitting unit includes a signal generator configured to generate a signal of a first frequency band for wireless charging, a power generation circuit configured to generate a modulation signal for modulating the signal of the first frequency band generated by the signal generator, and amplify a transmit power of the signal of the first frequency band based on voltage supplied from the outside of the power transmitting unit, a power transmission circuit configured to transmit the amplified transmit power to a power receiving unit via a first antenna, a second antenna configured to receive information about a charging state from the power receiving unit through a second frequency band, and a control circuit configured to control a duty and frequency of the modulation signal based on the charging state.
Abstract:
An apparatus and a method for charge control are provided. The apparatus for charge control may include an integrated direct current-to-direct current (DC/DC) converter configured to step up an output voltage level of a load to be greater than or equal to a supply voltage level set in a power amplifier, and the power amplifier configured to convert a direct current (DC) voltage stepped up by the integrated DC/DC converter into an alternating current (AC) voltage based on a resonant frequency, and to amplify the converted AC voltage. The apparatus for charge control may include a rectification unit configured to convert an AC power received wirelessly into a DC power; and a DC/DC converter configured to step down a voltage level of the DC power to a voltage level required by a load in the receiving mode.
Abstract:
A wireless power transmitter includes a source resonator configured to wirelessly transmit power via magnetic coupling with a target resonator; and an impedance adjusting unit configured to adjust an impedance of the source resonator using a plurality of impedance-matching bars located in the source resonator.
Abstract:
A wireless power transmission method includes searching for one or more routes to be used to transmit power to a reception resonator through one or more relay resonators, and converting the routes to respective one or more two-port networks. The method further includes calculating a transmission efficiency of each of the routes based on the two-port networks, and selecting a route with a highest transmission efficiency from the routes. The method further includes wirelessly transmitting power to the reception resonator through the selected route.
Abstract:
An apparatus and a method for wireless power reception are provided. A wireless power receiver includes a receiving unit configured to wirelessly receive a power. The wireless power receiver further includes a power consuming unit configured to consume the power, until a voltage applied to a load reaches a predetermined value, so that an amount of a power transferred from the receiving unit to the load is less than or equal to an initial accommodation power amount of the load.