Abstract:
Provided is a semiconductor memory device with improved fuse sensing reliability during a slow power-up operation. The semiconductor memory device may include a memory cell array including a normal memory cell array and a spare memory cell array; an anti-fuse circuit supplied with a first voltage and configured to store fail address information associated with a defective memory cell in the normal memory cell array and configured to sense the fail address information in response to a clock signal applied during a power-up period; and a fuse read circuit including a clock generator supplied with a second voltage, the fuse read circuit configured to detect respective levels of the first and second voltages during the power-up period to generate the clock signal and to read the sensed fail address information from the anti-fuse circuit in response to the clock signal.
Abstract:
A semiconductor memory device may include a first chip include a first array matrix and a second array matrix adjacent to each other and including memory cells, and a second chip below the first chip, and including sense amplifiers configured to drive the memory cells, where first cell bit lines are in the first array matrix, and second cell bit lines are in the second array matrix, where first bit lines and first complementary bit lines are below the first array matrix, and second bit lines and second complementary bit lines are below the second array matrix, and where the first bit lines and the second bit lines are connected to the first cell bit lines and the second cell bit lines, respectively, the first complementary bit lines and the second complementary bit lines are connected to the second cell bit lines and first cell bit lines, respectively.
Abstract:
A memory device includes a memory bank, a row selection circuit and a refresh controller. The memory bank includes a plurality of memory blocks, and each memory block includes a plurality of memory cells arranged in rows and columns. The row selection circuit performs an access operation with respect to the memory bank and a hammer refresh operation with respect to a row that is physically adjacent to a row that is accessed intensively. The refresh controller controls the row selection circuit such that the hammer refresh operation is performed during a row active time for the access operation. The hammer refresh operation may be performed efficiently and performance of the memory device may be enhanced by performing the hammer refresh operation during the row active time for the access operation.
Abstract:
A repair circuit includes first and second fuse circuits, a determination circuit and an output circuit. The first fuse circuit includes a first fuse and is configured to generate a first master signal indicating whether the first fuse has been programmed. The second fuse circuit includes second fuses and is configured to generate a first address indicating whether each of the second fuses has been programmed. The determination circuit is configured to generate a detection signal based on the first master signal and the first address. The detection signal indicates whether a negative program operation has been performed on the second fuse circuit. The output circuit is configured to generate a second master signal based on the first master signal and the detection signal and generate a repair address corresponding to a defective input address based on the first address and the detection signal.