Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: an L1 signaling generator configured to generate L1 signaling including first information and second information; a frame generator configured to generate a frame including a payload including a plurality of sub frames; and a signal processor configured to insert a preamble including the L1 signaling in the frame and transmit the frame. The first information includes information required for decoding a first sub frame among the plurality of sub frames. Therefore, a processing delay in a receiving apparatus is reduced.
Abstract:
A binary image sensor includes a plurality of unit pixels on a substrate having a surface on which light is incident. At least one quantum dot is disposed on the surface of a substrate. A column sense amplifier circuit is configured to detect binary information of a selected unit pixel among the plurality of unit pixels from a voltage or a current detected from the selected unit pixel, and a processing unit is configured to process binary information of the respective unit pixels to generate pixel image information. Related devices and methods of operation are also discussed.
Abstract:
A receiving apparatus is provided. The receiving apparatus includes: a receiver configured to receive an input signal including a transmission frame which includes a bootstrap, a preamble, and a payload; a bootstrap detector configured to detect the bootstrap based on a correlation between the input signal and a reference signal which is pre-stored; and a signal processor configured to signal-process the preamble based on the detected bootstrap and signal-process the payload based on the signal-processed preamble, and the bootstrap detector is configured to determine the correlation by quantizing at least one of the input signal and the reference signal and then multiplexing the input signal and the reference signal at least one of which is quantized. Accordingly, an area occupied by hardware and cost can be reduced and loss of performance can be minimized.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: an L1 signaling generator configured to generate L1 signaling including first information and second information; a frame generator configured to generate a frame including a payload including a plurality of sub frames; and a signal processor configured to insert a preamble including the L1 signaling in the frame and transmit the frame. The first information includes information required for decoding a first sub frame among the plurality of sub frames. Therefore, a processing delay in a receiving apparatus is reduced.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: an L1 signaling generator configured to generate L1 signaling including first information and second information; a frame generator configured to generate a frame including a payload including a plurality of sub frames; and a signal processor configured to insert a preamble including the L1 signaling in the frame and transmit the frame. The first information includes information required for decoding a first sub frame among the plurality of sub frames. Therefore, a processing delay in a receiving apparatus is reduced.
Abstract:
A semiconductor light-emitting device includes a first conductive semiconductor layer on a substrate, a superlattice layer including a plurality of first quantum barrier layers and a plurality of first quantum well layers, the plurality of first quantum barrier layers and the plurality of first quantum well layers being alternately stacked on the first conductive semiconductor layer, an active layer on the superlattice layer, and a second conductive semiconductor layer on the active layer, wherein a Si doping concentration of at least one of the plurality of first quantum well layers is equal to or greater than 1.0×1016/cm3 and less than or equal to 1.0×1018/cm3. Thus, the semiconductor light-emitting device may have increased light output and reliability.
Abstract:
A transmitter includes a frame generator which generates a plurality of frames each of which includes a preamble symbol and a data symbol, a pilot inserter which inserts a plurality of first pilots in the preamble symbol according to a predetermined first arrangement pattern and inserts a plurality of second pilots in a data symbol according to a second arrangement pattern, and a transmitting unit which transmits the plurality of frames in which the first and second pilots are inserted. Accordingly, a memory needed to store pilots may be reduced and precise synchronization may be performed based on an extended number of pilots.
Abstract:
A transmitting apparatus is disclosed. The transmitting apparatus includes a preamble symbol inserter configured to insert to a frame a preamble symbol including a signaling information, a guard interval inserter configured to insert guard intervals to both ends of the preamble symbol, and a transmitter configured to transmit a frame including the preamble symbol and the guard intervals, wherein one of the guard intervals which are inserted to both ends of the preamble symbol comprises a pseudo random noise (PN) sequence and another guard interval includes one between the PN sequence and a part of the signaling information. Accordingly, no separate algorithm to estimate size of FFT of the preamble symbol and the guard interval is necessary, robust signal detection and synchronization is enabled by the PN sequence inserted to the guard interval, and compensation of interference which is generated under multipath channel environment deems to be easier.
Abstract:
A method and apparatus for generating a preamble symbol in an Orthogonal Frequency Division Multiplexing (OFDM) system by generating a first main body sequence in a time domain by performing an inverse fast Fourier transform (IFFT) on a preset sequence in a frequency domain, generating a first postfix by copying samples in a preset section in the first main body sequence, generating a first prefix by copying samples in at least a portion of a section remaining by excluding the preset section from the first main body sequence, and generating a plurality of symbols, based on a combination of the first main body sequence, the first prefix, and the first postfix.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: an L1 signaling generator configured to generate L1 signaling including first information and second information; a frame generator configured to generate a frame including a payload including a plurality of sub frames; and a signal processor configured to insert a preamble including the L1 signaling in the frame and transmit the frame. The first information includes information required for decoding a first sub frame among the plurality of sub frames. Therefore, a processing delay in a receiving apparatus is reduced.