摘要:
The present invention provides a positive electrode active material that has rate characteristics suitable for nonaqueous electrolyte batteries and particularly nonaqueous electrolyte secondary batteries, a method by which this positive electrode active material can be easily mass produced, and a high-performance nonaqueous electrolyte battery that has a positive electrode active material obtained by this method.The present invention relates to a method of producing a positive electrode active material, the method comprising a step of mixing a carbon source with lithium manganese phosphate LiMnPO4 or a compound LiMn1-xMxPO4 (where, 0≦x
摘要:
The present invention provides a positive electrode active material that has rate characteristics suitable for nonaqueous electrolyte batteries and particularly nonaqueous electrolyte secondary batteries, a method by which this positive electrode active material can be easily mass produced, and a high-performance nonaqueous electrolyte battery that has a positive electrode active material obtained by this method.The present invention relates to a method of producing a positive electrode active material, the method comprising a step of mixing a carbon source with lithium manganese phosphate LiMnPO4 or a compound LiMn1-xMxPO4 (where, 0≦x
摘要:
The present invention provides an olivine-type positive electrode active material that is an inexpensive and very safe positive electrode active material that also exhibits excellent battery properties even at high energy densities. The present invention also provides a method of producing this olivine-type positive electrode active material and a nonaqueous electrolyte battery that has a positive electrode that contains this olivine-type positive electrode active material. The present invention relates to a positive electrode active material that comprises an olivine-type lithium manganese phosphate compound represented by the following general formula (1) LixMnyMaPO4 (1) (in the formula, 0
摘要:
In a non-aqueous electrolyte secondary battery, in order to adjust a cathode active material in which guest cation such as Na and Li is included, alkaline metal fluoride which is expressed by a general formula AF and transition metal fluoride which is expressed by a formula M′ F2 are subjected to a mechanical milling process to produce metal fluoride compound AM′ F3. The mechanical milling process desirably uses a planetary ball mill.
摘要:
Disclosed is a positive electrode active material for nonaqueous electrolyte secondary batteries which contains a complex oxide mainly containing sodium, nickel and a tetravalent metal while having a hexagonal structure. This positive electrode active material enables to obtain a nonaqueous electrolyte secondary battery with high operating voltage. The complex oxide is preferably expressed as Na[Na(1/3-2x/3)Ni(x-y)M(2/3-x/3-y)A2y]O2 (wherein M represents one or more tetravalent metals, A represents one or more trivalent metals, 0 y).
摘要:
Electrode active material that is used together with an electrolyte solution having an electrolyte decomposition potential Ve is represented by the general expression LixFeMyO2 and is amorphous. In the expression, x and y are values which independently satisfy 1
摘要:
A method for producing a cathode material for a secondary battery, characterized in that it comprises admixing a compound liberating a phosphate ion in a solution (phosphoric acid H3PO4, phosphorus pentoxide PO5, ammonium dihydrogenphosphate NH4H2PO4 and the like), water and metallic iron, adding lithium carbonate, lithium hydroxide or a hydrate thereof to the resultant mixture, and firing the resultant reaction product, to thereby synthesize LiFePO4.
摘要翻译:一种二次电池用阴极材料的制造方法,其特征在于,在溶液(磷酸H 3 PO 4,五氧化二磷PO5,磷酸二氢铵NH 4 H 2 PO 4等),水和金属铁溶液中混合放出磷酸根离子的化合物,加入 碳酸锂,氢氧化锂或其水合物加入到所得混合物中,并焙烧得到的反应产物,从而合成LiFePO 4。
摘要:
An electroactive material and a method of manufacturing the same is provided, in which the primary component of the electroactive material is a metal boron oxide complex, and the electroactive material exhibits excellent charge/discharge characteristics. The electroactive material of the present invention is primarily composed of an amorphous metal complex represented by the general formula M2-2xB2xO3. M is one or two or more metal elements selected from the transition metal elements, e.g., Fe or V. In addition, x is 0
摘要翻译:提供电活性材料及其制造方法,其中电活性材料的主要组分是金属氧化硼复合物,并且电活性材料表现出优异的充电/放电特性。 本发明的电活性材料主要由通式为M 2〜2×2×O 3 N 3表示的非晶态金属络合物构成。 M是选自过渡金属元素例如Fe或V中的一种或两种以上的金属元素。另外,x是0
摘要:
A lithium secondary battery includes: a positive electrode that contains a positive electrode active material; a negative electrode; and a nonaqueous electrolyte. The positive electrode active material is amorphous and is expressed by LixA[PaM1-a]yOz where, in the formula, A is Mn or Ni; M is a glass former element having an electronegativity lower than P; and x, y, a and z respectively satisfy 1
摘要:
Electrode active material that is used together with an electrolyte solution having an electrolyte decomposition potential Ve is represented by the general expression LixFeMyO2 and is amorphous. In the expression, x and y are values which independently satisfy 1