摘要:
A method for producing a cathode material for a secondary battery, characterized in that it comprises admixing a compound liberating a phosphate ion in a solution (phosphoric acid H3PO4, phosphorus pentoxide PO5, ammonium dihydrogenphosphate NH4H2PO4 and the like), water and metallic iron, adding lithium carbonate, lithium hydroxide or a hydrate thereof to the resultant mixture, and firing the resultant reaction product, to thereby synthesize LiFePO4.
摘要翻译:一种二次电池用阴极材料的制造方法,其特征在于,在溶液(磷酸H 3 PO 4,五氧化二磷PO5,磷酸二氢铵NH 4 H 2 PO 4等),水和金属铁溶液中混合放出磷酸根离子的化合物,加入 碳酸锂,氢氧化锂或其水合物加入到所得混合物中,并焙烧得到的反应产物,从而合成LiFePO 4。
摘要:
A method for producing a cathode material for a secondary battery, characterized in that it comprises admixing a compound liberating a phosphate ion in a solution (phosphoric acid H3PO4, phosphorus pentoxide PO5, ammonium dihydrogenphosphate NH4H2PO4 and the like), water and metallic iron, adding lithium carbonate, lithium hydroxide or a hydrate thereof to the resultant mixture, and firing the resultant reaction product , to thereby synthesize LiFePO4.
摘要翻译:一种二次电池用阴极材料的制造方法,其特征在于,将含有磷酸根离子的化合物(磷酸H 3 PO 4·4),磷 五氧化物PO 5,磷酸二氢铵NH 4 H 2 PO 4等),水和金属铁, 向所得混合物中加入碳酸锂,氢氧化锂或其水合物,并煅烧所得反应产物,从而合成LiFePO 4。
摘要:
Disclosed is a process for producing a secondary battery cathode material by calcining raw materials. The process is characterized by calcining the raw materials together with one or more substances, which are selected from the group consisting of hydrogen, water and water vapor, and conductive carbon and/or a substance, which can form conductive carbon by pyrolysis, added thereto. As crystals of the secondary battery cathode material obtained by this process have been controlled fine sizes, the secondary battery cathode material promotes movements of ions of an alkali metal led by lithium between the interiors of grains of the cathode material and an electrolyte to suppress polarization in an electrode reaction, and further, increases an area of contact between the positive material and a conductivity-imparting material to provide improved conductivity so that improvements are assured in voltage efficiency and specific battery capacity.
摘要:
A method for producing a cathode material for a lithium battery, characterized in that it comprises admixing a compound liberating a phosphate ion in a solution and metallic iron, and dissolving the metallic iron, followed by firing, thereby synthesizing ferric phosphate. The above method further comprising reacting a raw material mixture while grinding it down or refluxing can produce ferric phosphate cathode material having a fine particle diameter and exhibiting high activity, through a precursor before firing having a fine particle diameter.
摘要:
A method for producing a cathode material for a lithium battery, characterized in that it comprises admixing a compound liberating a phosphate ion in a solution and metallic iron, and dissolving the metallic iron, followed by firing, thereby synthesizing ferric phosphate. The above method further comprising reacting a raw material mixture while grinding it down or refluxing can produce ferric phosphate cathode material having a fine particle diameter and exhibiting high activity, through a precursor before firing having a fine particle diameter.
摘要:
In a non-aqueous electrolyte secondary battery, in order to adjust a cathode active material in which guest cation such as Na and Li is included, alkaline metal fluoride which is expressed by a general formula AF and transition metal fluoride which is expressed by a formula M′ F2 are subjected to a mechanical milling process to produce metal fluoride compound AM′ F3. The mechanical milling process desirably uses a planetary ball mill.
摘要:
Disclosed is a positive electrode active material for nonaqueous electrolyte secondary batteries which contains a complex oxide mainly containing sodium, nickel and a tetravalent metal while having a hexagonal structure. This positive electrode active material enables to obtain a nonaqueous electrolyte secondary battery with high operating voltage. The complex oxide is preferably expressed as Na[Na(1/3-2x/3)Ni(x-y)M(2/3-x/3-y)A2y]O2 (wherein M represents one or more tetravalent metals, A represents one or more trivalent metals, 0 y).
摘要:
Electrode active material that is used together with an electrolyte solution having an electrolyte decomposition potential Ve is represented by the general expression LixFeMyO2 and is amorphous. In the expression, x and y are values which independently satisfy 1
摘要:
An electroactive material and a method of manufacturing the same is provided, in which the primary component of the electroactive material is a metal boron oxide complex, and the electroactive material exhibits excellent charge/discharge characteristics. The electroactive material of the present invention is primarily composed of an amorphous metal complex represented by the general formula M2-2xB2xO3. M is one or two or more metal elements selected from the transition metal elements, e.g., Fe or V. In addition, x is 0
摘要翻译:提供电活性材料及其制造方法,其中电活性材料的主要组分是金属氧化硼复合物,并且电活性材料表现出优异的充电/放电特性。 本发明的电活性材料主要由通式为M 2〜2×2×O 3 N 3表示的非晶态金属络合物构成。 M是选自过渡金属元素例如Fe或V中的一种或两种以上的金属元素。另外,x是0
摘要:
A lithium secondary battery includes: a positive electrode that contains a positive electrode active material; a negative electrode; and a nonaqueous electrolyte. The positive electrode active material is amorphous and is expressed by LixA[PaM1-a]yOz where, in the formula, A is Mn or Ni; M is a glass former element having an electronegativity lower than P; and x, y, a and z respectively satisfy 1