摘要:
System and method for processing a semiconductor device surface to reduce dark current and white pixel anomalies. An embodiment comprises a method applied to a semiconductor or photodiode device surface adjacent to a photosensitive region, and opposite a side having circuit structures for the device. A doped layer may optionally be created at a depth of less than about 10 nanometers below the surface of the substrate and may be doped with a boron concentration between about 1E13 and 1E16. An oxide may be created on the substrate using a temperature sufficient to reduce the surface roughness below a predetermined roughness threshold, and optionally at a temperature between about 300° C. and 500° C. and a thickness between about 1 nanometer and about 10 nanometers. A dielectric may then be created on the oxide, the dielectric having a refractive index greater than a predetermined refractive threshold, optionally at least about 2.0.
摘要:
System and method for processing a semiconductor device surface to reduce dark current and white pixel anomalies. An embodiment comprises a method applied to a semiconductor or photodiode device surface adjacent to a photosensitive region, and opposite a side having circuit structures for the device. A doped layer may optionally be created at a depth of less than about 10 nanometers below the surface of the substrate and may be doped with a boron concentration between about 1E13 and 1E16. An oxide may be created on the substrate using a temperature sufficient to reduce the surface roughness below a predetermined roughness threshold, and optionally at a temperature between about 300° C. and 500° C. and a thickness between about 1 nanometer and about 10 nanometers. A dielectric may then be created on the oxide, the dielectric having a refractive index greater than a predetermined refractive threshold, optionally at least about 2.0.
摘要:
A method includes performing a first epitaxy to grow a first epitaxy layer of a first conductivity type, and performing a second epitaxy to grow a second epitaxy layer of a second conductivity type opposite the first conductivity type over the first epitaxy layer. The first and the second epitaxy layers form a diode. The method further includes forming a gate dielectric over the first epitaxy layer, forming a gate electrode over the gate dielectric, and implanting a top portion of the first epitaxy layer and the second epitaxy layer to form a source/drain region adjacent to the gate dielectric.
摘要:
Image sensors comprising an isolation region according to embodiments are disclosed, as well as methods of forming the image sensors with isolation region. An embodiment is a structure comprising a semiconductor substrate, a photo element in the semiconductor substrate, and an isolation region in the semiconductor substrate. The isolation region is proximate the photo element and comprises a dielectric material and an epitaxial region. The epitaxial region is disposed between the semiconductor substrate and the dielectric material.
摘要:
Methods and apparatus for a backside illuminated (BSI) image sensor device are disclosed. A BSI sensor device is formed on a substrate comprising a photosensitive diode. The substrate may be thinned at the backside, then a B doped Epi-Si(Ge) layer may be formed on the backside surface of the substrate. Additional layers may be formed on the B doped Epi-Si(Ge) layer, such as a metal shield layer, a dielectric layer, a micro-lens, and a color filter.
摘要:
A method includes performing a first epitaxy to grow a first epitaxy layer of a first conductivity type, and performing a second epitaxy to grow a second epitaxy layer of a second conductivity type opposite the first conductivity type over the first epitaxy layer. The first and the second epitaxy layers form a diode. The method further includes forming a gate dielectric over the first epitaxy layer, forming a gate electrode over the gate dielectric, and implanting a top portion of the first epitaxy layer and the second epitaxy layer to form a source/drain region adjacent to the gate dielectric.
摘要:
Image sensors comprising an isolation region according to embodiments are disclosed, as well as methods of forming the image sensors with isolation region. An embodiment is a structure comprising a semiconductor substrate, a photo element in the semiconductor substrate, and an isolation region in the semiconductor substrate. The isolation region is proximate the photo element and comprises a dielectric material and an epitaxial region. The epitaxial region is disposed between the semiconductor substrate and the dielectric material.
摘要:
Methods and apparatus for a backside illuminated (BSI) image sensor device are disclosed. A BSI sensor device is formed on a substrate comprising a photosensitive diode. The substrate may be thinned at the backside, then a B doped Epi-Si(Ge) layer may be formed on the backside surface of the substrate. Additional layers may be formed on the B doped Epi-Si(Ge) layer, such as a metal shield layer, a dielectric layer, a micro-lens, and a color filter.
摘要:
A device includes a semiconductor substrate having a front side and a backside, a photo-sensitive device disposed on the front side of the semiconductor substrate, and a first and a second grid line parallel to each other. The first and the second grid lines are on the backside of, and overlying, the semiconductor substrate. The device further includes an adhesion layer, a metal oxide layer over the adhesion layer, and a high-refractive index layer over the metal layer. The adhesion layer, the metal oxide layer, and the high-refractive index layer are substantially conformal, and extend on top surfaces and sidewalls of the first and the second grid lines.
摘要:
A device includes a semiconductor substrate having a front side and a backside, a photo-sensitive device disposed on the front side of the semiconductor substrate, and a first and a second grid line parallel to each other. The first and the second grid lines are on the backside of, and overlying, the semiconductor substrate. The device further includes an adhesion layer, a metal oxide layer over the adhesion layer, and a high-refractive index layer over the metal layer. The adhesion layer, the metal oxide layer, and the high-refractive index layer are substantially conformal, and extend on top surfaces and sidewalls of the first and the second grid lines.