摘要:
The present invention provides flexible conventional polyurethane foams made from at least one polyisocyanate and at least one vegetable oil alkoxylated in the presence of a double metal cyanide (DMC) catalyst, optionally at least one non-vegetable oil-based polyol, generally in the presence of a blowing agent and optionally in the presence of a surfactant, pigment, flame retardant, catalyst or filler. The alkoxylated natural oil must have (a) an ethylene oxide content in the alkoxylated segment greater than 20% by weight, (b) a primary hydroxyl group content of at least 10%, with the sum of (a)+(b) being at least 30% but no greater than 60%, The alkoxylated natural oils are environmentally-friendly, bio-based polyols which can be used to increase the “green” content of polyurethane foams without having detrimental effects on foam properties.
摘要:
A viscoelastic foam is produced by reacting (a) an isocyanate component that includes at least 25% by weight of diphenylmethane diisocyanate having a monomeric content of from 50 to 90% by weight, (b) an isocyanate-reactive component, (c) at least one catalyst, (d) at least one surface active agent, and (e) liquid carbon dioxide. These foams are characterized by a ball rebound of less than 20%. Particularly preferred foams are characterized by a 95% height recovery time greater than 4 seconds.
摘要:
The present invention provides polyurethane foams and elastomers made with an alkoxylated vegetable oil hydroxylate replacing at least a portion of the typically used petroleum-based polyol(s). Also provided are processes for making the inventive foams and elastomers and for making alkoxylated vegetable oil hydroxylates. The alkoxylated vegetable oil hydroxylates are environmentally-friendly, bio-based polyols which advantageously also offer the potential of improved hydrophobicity in polyurethane foams and elastomers. The inventive polyurethane foams and elastomers may find use in a wide variety of products such as automobile interior parts, polyurethane structural foams, floor coatings and athletic running tracks.
摘要:
A polyether polyol based on renewable materials is obtained by the in situ production of a polyether from a hydroxyl group-containing vegetable oil, at least one alkylene oxide and a low molecular weight polyol having at least 2 hydroxyl groups. The polyol is produced by introducing the hydroxyl group-containing vegetable oil, a catalyst and an alkylene oxide to a reactor and initiating the alkoxylation reaction. After the alkoxylation reaction has begun but before the reaction has been 20% completed, the low molecular weight polyol having at least 2 hydroxyl groups is continuously introduced into the reactor. After the in situ made polyether polyol product having the desired molecular weight has been formed, the in situ made polyether polyol is removed from the reactor. These polyether polyols are particularly suitable for the production of flexible polyurethane foams.
摘要:
This invention relates to polymer polyols comprising the free-radical polymerization product of a base polyol, at least one ethylenically unsaturated monomer, and, optionally, a preformed stabilizer, in the presence of at least one free-radical polymerization initiator and at least one chain transfer agent, in which the base polyol is a natural oil. A process for preparing these polymer polyols is also described. The present invention also relates to a polyurethane foam prepared from these polymer polyols and to a process for the preparation of these polyurethane foams.
摘要:
This invention relates to a one-stage process for the production of polyoxyalkylene containing polyols having equivalent weights of about 150 to about 6000 and functionalities of about 2 to 8. The process comprises (1) mixing (a) an organic compound having a hydroxyl functionality of about 2 to about 8 and an equivalent weight of about 35 to about 575, with (b) a hydroxyl functional compound having an equivalent weight of about 100 to about 6000 and a functionality of about 2 to 8; and (2) alkoxylating the mixture with (c) one or more alkylene oxides, in the presence of (d) one or more double metal cyanide catalysts. Suitable compounds to be used as (a) the organic compound having a hydroxyl functionality of about 2 to about 8 and an equivalent weight of about 35 to about 575 in the present invention include bisphenol-A, Bisphenol TMC, tetrabromobisphenol A, and novolak phenolic resins.
摘要:
The present invention provides a high support (HS) and high support-high resilience (HS-HR) flexible polyurethane foams prepared by catalyzed reaction of one or more di- or polyisocyanates at an isocyanate index from about 70 to about 130 with: (a) a polyoxyalkylene polyol or polyoxyalkylene polyol blend having an average hydroxyl weight of at least about 1000 and an average primary hydroxyl content of at least about 25%; and (b) an effective amount of a blowing agent containing water; in the presence of from about 0.01 to about 0.5% parts by weight based on 100 parts by weight of said polyol component of a liquid hydrocarbon containing greater than 50% of polymerized butadiene. The high support (HS) and high support-high resilience (HS-HR) flexible polyurethane foams of the present invention have a reduced force to crush (FTC).
摘要:
Polyoxyalkylene polyether polyols suitable for preparation of flexible polyurethane foams are prepared by oxyalkylating an aqueous solution of one or more polyhydric, hydroxyl-functional solid initiators under conditions where both water as well as initiator are oxyalkylated. The polyols have calculated functionalities of between about 2.2 and 4.0 and hydroxyl numbers in the range of 10 to 180. The polyols may be used to prepare soft, high resiliency polyurethane flexible foams at low isocyanate indexes.
摘要:
Polyols are produced by an alkoxylation process in which a vegetable oil containing hydroxyl functional groups is combined with a DMC catalyst to form a mixture, the DMC catalyst is then activated by adding ethylene oxide and/or propylene oxide to the vegetable oil/catalyst mixture, and ethylene oxide and propylene oxide are added to the mixture containing activated DMC catalyst in amounts such that the total of percentage of ethylene oxide in the polyol plus percentage of primary hydroxyl groups in the polyol produced is from 50 to 77% and the percentage of primary hydroxyl groups is at least 30% but less than 50%. These polyols are useful for the production of molded polyurethane foams, particularly, hot-cure molded polyurethane foams.
摘要:
This invention relates to polymer polyols comprising the free-radical polymerization product of a base polyol, at least one ethylenically unsaturated monomer, and, optionally, a preformed stabilizer, in the presence of at least one free-radical polymerization initiator and at least one chain transfer agent, in which the base polyol is a natural oil. A process for preparing these polymer polyols is also described. The present invention also relates to a polyurethane foam prepared from these polymer polyols and to a process for the preparation of these polyurethane foams.