Abstract:
A calibration circuit providing a programmable voltage generator that is selectively connectable to a first capacitor plate of a capacitive structure to supply a voltage thereto. A reference voltage generator is coupled to the output of the programmable voltage generator and generates a reference voltage. A comparator receives the reference voltage and a discharging voltage from the capacitive structure during a discharge period and, based on those inputs, generates a signal that is output to a digital controller. A constant current source is selectively connectable to the capacitive structure to generate a constant current. Based on the output of the comparator, the constant current, and a count representing a time during which the discharging voltage decreases, the digital controller measures capacitance to calibrate a movable mirror of the capacitive structure. During calibration, the digital controller controls the programmable voltage generator and a second capacitor plate of the capacitive structure.
Abstract:
A track and hold circuit includes a signal input terminal, a clock input terminal, an output terminal, a transistor, and a bootstrapping circuit with a transformer. The transistor includes a source, a drain, and a gate, where the source is coupled to the signal input terminal, and the drain is coupled to the output terminal. The transformer includes a primary winding coupled to the clock input terminal, and a secondary winding. The secondary winding is coupled between the source and the gate to control a gate-source voltage of the transistor.
Abstract:
A digital system has a dielectric core waveguide that is formed within a multilayer substrate. The dielectric waveguide has a longitudinal dielectric core member formed in the core layer having two adjacent longitudinal sides each separated from the core layer by a corresponding slot portion formed in the core layer The dielectric core member has the first dielectric constant value. A cladding surrounds the dielectric core member formed by a top layer and the bottom layer infilling the slot portions of the core layer. The cladding has a dielectric constant value that is lower than the first dielectric constant value.
Abstract:
A duty cycle correction circuit includes a charge pump and a controller. The charge pump includes a current source, a first output, and a second output. The charge pump routes current from the current source to the first output during a positive portion of a clock, and routes current from the current source to the second output during a negative portion of the clock. The controller compares charge accumulated from the first output to charge accumulated from the second output over a plurality of clock cycles to determine which of the positive portion of the clock and the negative portion of the clock is longer. The controller also generates a digital value that indicates an amount of adjustment to apply to a duty cycle of the clock based on which of the positive portion of the clock and the negative portion of the clock is longer.
Abstract:
A method for transmitting a plurality of data bits and a clock signal on a return to zero (RZ) signal includes: transmitting a first voltage that is greater than a first threshold, the first voltage being decodable to first order of data bits; transmitting a second voltage that is between a second threshold and the first threshold, the second voltage being decodable to a second order of data bits; transmitting a third voltage that is between a third threshold and a fourth threshold, the third voltage being decodable to a third order of data bits; transmitting a fourth voltage that is greater in magnitude than the fourth threshold, the fourth voltage being decodable to a fourth order of data bits; and transitioning the clock signal in response to the RZ signal being between the second threshold and the third threshold.
Abstract:
A metallic waveguide is mounted on a multilayer substrate. The metallic waveguide has an open end formed by a top, bottom and sides configured to receive a core member of a dielectric waveguide, and an opposite tapered end formed by declining the top of the metallic waveguide past the bottom of the metallic waveguide and down to contact the multilayer substrate. A pinnacle of the tapered end is coupled to the ground plane element, and the bottom side of the metallic waveguide is in contact with the multiplayer substrate and coupled to the microstrip line.
Abstract:
One bit is a smallest increment of binary measurement in first and second digital values. The first digital value is converted into a first analog signal. The second digital value is converted into a second analog signal. The first analog signal is augmented by a first amount that equates to less than the smallest increment of binary measurement, so that the augmented first analog signal by definition does not equal the second analog signal. The second analog signal is augmented by a second amount that equates to less than the smallest increment of binary measurement, so that the augmented second analog signal by definition does not equal the first analog signal. The augmented first analog signal is compared to the second analog signal, and a first signal is output in response thereto. The augmented second analog signal is compared to the first analog signal, and a second signal is output in response thereto. In response to the first and second signals, a determination is made about whether the first digital value is greater than the second digital value, whether the first digital value is less than the second digital value, and whether the first digital value is equal to the second digital value.
Abstract:
A multichannel dielectric wave guide includes a set of dielectric core members that have a length and a cross section shape that is approximately rectangular, The core members have a first dielectric constant value. A cladding surrounds the set of dielectric core members and has a second dielectric constant value that is lower than the first dielectric constant.
Abstract:
A metallic waveguide is mounted on a multilayer substrate. The metallic waveguide has an open end formed by a top, bottom and sides configured to receive a core member of a dielectric waveguide, and an opposite tapered end formed by declining the top of the metallic waveguide past the bottom of the metallic waveguide and down to contact the multilayer substrate. A pinnacle of the tapered end is coupled to the ground plane element, and the bottom side of the metallic waveguide is in contact with the multiplayer substrate and coupled to the microstrip line.
Abstract:
In described examples, an integrated circuit includes an on-off keying (OOK) digital isolator, which includes a first circuitry, a multiplexer, an OOK modulator, an isolation barrier, an OOK envelope detector, and a second circuitry. The first circuitry generates and outputs a calibration signal. The multiplexer has a data signal input, and an input coupled to a first circuitry output. An OOK modulator input is coupled to a multiplexer output. An isolation barrier input is coupled to an OOK modulator output. An OOK envelope detector input is coupled to an isolation barrier output. The second circuitry includes an input coupled to an OOK envelope detector output, and an output coupled to an OOK envelope detector control input. The second circuitry detects a duty cycle distortion (DCD) of the OOK envelope detector output, and outputs a control signal to change the OOK envelope detector output's duty cycle based on the detected DCD.