Abstract:
Intrinsically safe laser sourced illumination. A system for illumination is disclosed, including a plurality of laser illumination sources configured to transmit laser beams; a dichroic mirror spaced from the plurality of laser illumination sources and having an aperture configured to allow the laser beams to pass through the dichroic mirror, the remaining surfaces of the dichroic mirror configured to reflect the laser beams; a phosphor element spaced from the dichroic mirror and coated with a substance to fluoresce when struck by the laser beams and configured to disperse the laser beams and to output combined light that includes fluorescent light and the dispersed laser beams; and an illumination output arranged to receive the combined light from the phosphor element and to output illuminating light containing both the fluorescent light and the dispersed laser beams. Methods are also disclosed.
Abstract:
In described examples, one or more devices include: a light source to generate a beam of light; and optics to generate a spot of light in response to the beam of light. A color wheel revolves in a direction of rotation about an axis, so the spot of light illuminates an area of the color wheel. The spot of light has: a first width; and a second width wider than the first width and orthogonal to the first width. The first width is aligned tangential to the direction of rotation.
Abstract:
Illumination with DMD and laser modulated adaptive beam shaping. A DMD illumination system includes a plurality of laser illumination sources, each of the plurality of illumination sources directing light onto a phosphor arranged between the plurality of laser illumination sources and a digital micro-mirror device; control circuitry coupled to the plurality of illumination sources and to the digital micro-mirror device configured for controlling the position of the array of micro-mirrors and further configured for providing control signals to each of the plurality of laser illumination sources, so that the light from the plurality of laser illumination sources strikes the phosphor and is then directed from the phosphor onto the array of micro-mirrors in the digital micro-mirror device when the micro-mirrors are at a predetermined position, and the light is reflected from the digital micro-mirror device and out of the system. Methods are also disclosed.
Abstract:
One or more excitation energy sources emit light in an excitation spectrum and direct the emitted light as an excitation beam to the emitting surface of a wavelength conversion element directly or via reflection. Distinct areas of the emitting surface are coated with one or more distinct fluorescent phosphors. The phosphor-coated areas receive the excitation beam and generate a sequence of fluoresced light beams at a light output, each fluoresced beam of a narrow spectrum determined by the type of phosphor and the excitation spectrum. The fluoresced beams travel parallel to an emitting axis at a non-zero angle to axes associated with the excitation beams.
Abstract:
A projector system with a single imaging array has a low-etendue light source. The projector system includes a first optical path from the low-etendue light source to a plurality of optical conversion media having a plurality of emission wavelengths to provide display light with wavelengths longer than blue light. The projector system includes a second optical path from the optical conversion media to the imaging array. The projector system has a means of moving an excitation location on the optical conversion media in the first optical path. The projector system may include a blue LED, a diffuser region, or an optical conversion medium with a blue emission wavelength to provide blue display light. Light from the low-etendue light source is prevented from directly impinging on the imaging array.
Abstract:
An automotive headlamp is provided that includes a digital micromirror device (DMD) headlight module, the DMD headlight module including a DMD, a white light module to provide a white light beam to illuminate the DMD, illumination optics optically coupled between the DMD and the white light module to prepare the white light beam for illuminating the DMD, and projection optics optically coupled to the DMD to receive pixelated light reflected by the DMD and project a pixelated light beam on road, in which at least one of the DMD, the white light module, and the illumination optics shape a beam profile of the white light beam such that the light reflected by the DMD has a pixelated non-uniform beam profile suitable for projecting a white light beam that forms a portion of a white light beam of the headlamp.
Abstract:
In described examples of an automotive headlamp, a first illumination source outputs a first color light, and a second illumination source outputs a second color light different from the first color light. A digital micromirror device receives the first color light and the second color light and reflects the first color light and the second color light. A projection optics receives reflected light from the digital micromirror device and outputs a beam from the automotive headlamp having a color that is a combination of the first and second colors. A controller controls intensity and duration of the first illumination source and the second illumination source, controls a pattern on the digital micromirror device, and spectrally tunes the color of the output beam.
Abstract:
A headlamp includes a digital micromirror device (DMD) reflector, a light source, and projection optics. The DMD reflector includes a DMD and a static reflector disposed on a plurality of sides of the DMD. The light source is disposed to illuminate the DMD reflector. The projection optics are configured to project light reflected by the DMD and light reflected by the static reflector via a same lens system.
Abstract:
To generate a projected light beam, a headlamp includes: a light source to provide light; and a digital micromirror device (DMD). Illumination optics are optically coupled between the light source and the DMD to illuminate the DMD with the light from the light source. The DMD is arranged to reflect the light as pixelated light. Projection optics are optically coupled to the DMD to project the pixelated light as a mid-beam portion of the projected light beam. The mid-beam portion has a non-uniform mid-range beam profile shaped by at least the DMD and the illumination optics. A field of view and an intensity of the projected light beam are controllable by the light source and the DMD. Also, the headlamp includes a high beam module to provide a high beam portion of the projected light beam.
Abstract:
In described examples of an illumination system, the illumination system includes: at least two illumination modules to output different color light beams to an illumination path; and illumination optics corresponding to each of the at least two illumination modules to receive the light beams and to provide illumination to a programmable spatial light modulator. The programmable spatial light modulator receives the illumination and outputs patterned light to projection optics. The projection optics receive the patterned light and output the patterned light as an output beam through a lens. A controller controls the intensity and duration of light output from the at least two illumination modules and controls the pattern of the spatial light modulator. The output beam is a color formed by combining the different color light beams. The output beam is spectrally tunable.