Abstract:
A printed circuit board enclosure employs a box having an open base and opposing side plates. Securing tabs extend laterally from the side plates. The securing tabs have bottom surfaces that are coplanar extensions of a bottom surface of the box and are configured to be attached to the main circuit board. A cover is received on the box. The cover is configured to close the open top of the box. The cover has side flanges extending downwardly from a top plate with mating tabs extending laterally from the side flanges aligned with the securing tabs.
Abstract:
A bundle gripping tool has a support ring sector 12a extending from a handle 11 and a jaw 12b pivotally mounted to the handle opposing the support ring sector 12a. The jaw is rotatable from an open position to a closed position wherein the jaw 12b and support ring sector 12a form a circular support ring 12 concentric to a bundle axis 14. The jaw exposes a first open sector accessing a central aperture in the open position. A snare ring 22 is supported on the jaw 12b in the open position and rotatable on the support ring 12 in the closed position and has a second open sector 34 wherein in an unrotated position of the snare ring at least partially aligns the second open sector with the first open sector exposing the central aperture. A plurality of snare cables 40 are engaged between the support ring and the snare ring with a first set of attachment points and second set of attachment points relatively positioned whereby each of the plurality of snare cables partially encircles the bundle axis in the closed and rotated position and exposes the bundle axis in the unrotated and open position. An actuator 48 is configured to open and close the jaw and rotate the snare ring with the jaw in the closed position.
Abstract:
Methods and apparatus for automated routing of wires of a wire harness on a form board. A wire harness comprising a wire end connector and a multiplicity of groups of wires is supported and carried by a carrier end effector mounted to an end of a first robotic arm. The wire groups are accessed and then routed on the form board by a routing end effector mounted to an end of a second robotic arm. Initially a wire gripper of the routing end effector is opened. The second robotic arm is then controlled to move the routing end effector so that respective first portions of all wire groups are accessible for gripping by the wire gripper. Then the wire gripper is closed to grip the first portions of wires. Then the second robotic arm is controlled to move the routing end effector to place second portions of the wires of all wire groups in a first elastic retainer wire routing device attached to the form board. Thereafter, the routing end effector routes the first group of wires through a second elastic retainer wire routing device and then routes the second group of wires through a third elastic retainer wire routing device.
Abstract:
Systems, methods, and apparatus for photonic crystals logic devices are disclosed. In one or more embodiments, a disclosed method for an optical logic device comprises radiating, by at least one source, at least one signal. The method further comprises reflecting at least one signal off of at least one photonic crystal, when at least one photonic crystal senses a physical phenomena of a threshold strength. Also, the method comprises not reflecting at least one signal off of at least one photonic crystal, when at least one photonic crystal does not sense the physical phenomena of the threshold strength. Further, the method comprises detecting or not detecting, by at least one detector, at least one signal.
Abstract:
One aspect of the disclosure relates to an apparatus including an extrusion nozzle. The nozzle includes an inlet end, an outlet end opposite the inlet end and an axis extending between the inlet end and the outlet end. The extrusion nozzle is configured to rotate about the axis. The extrusion nozzle also includes a rotary drive engagement portion between the inlet end and the outlet end. The extrusion nozzle further includes a cavity including an inlet opening at the inlet end and an outlet opening at the outlet end. The inlet opening has a different configuration than the outlet opening.
Abstract:
Safety systems and methods for production environments are disclosed. Safety systems include at least one sensing device configured to detect presence of an unauthorized human and/or an authorized human at least partially within a defined safety zone, and a controller configured to automatically alter at least one aspect of the production environment responsive to the presence of the unauthorized human and/or the authorized human. Safety methods include detecting presence of an unauthorized human and/or an authorized human at least partially within a defined safety zone, and automatically altering at least one aspect of the production environment responsive to the detecting.
Abstract:
A method and system for fabricating a part includes sectionalizing a computer-generated representation of a part into strata having an order, forming layers corresponding to the strata from sheet material, stacking at least two of the layers in the order, and joining the layers together. The method and system are suitable for producing a phase-change material container for a thermal energy harvesting device, for example.
Abstract:
An optical sensor and method of manufacture are provided herein. The optical sensor includes an optical fiber comprising a terminating end surface, and a photonic crystal coupled to the terminating end surface of the optical fiber.
Abstract:
One aspect of the disclosure relates to an apparatus including an extrusion nozzle. The nozzle includes an inlet end, an outlet end opposite the inlet end and an axis extending between the inlet end and the outlet end. The extrusion nozzle is configured to rotate about the axis. The extrusion nozzle also includes a rotary drive engagement portion between the inlet end and the outlet end. The extrusion nozzle further includes a cavity including an inlet opening at the inlet end and an outlet opening at the outlet end. The inlet opening has a different configuration than the outlet opening.
Abstract:
A modular truss assembly configured to be placed in small or narrow spaces such as within the floor, sidewall, or crown of a vehicle for mechanically and electrically mounting system components of a modular equipment center (MEC). A plurality of MECs is spatially distributed throughout the vehicle to service equipment loads. The modular truss assembly provides different voltage levels for powering the system components of the MEC and for powering the equipment loads. In one or more configurations, all or part of the modular truss assembly can be removed from the vehicle for repair or replacement.