Abstract:
A probe tip for an isolated probe having a triaxial cable has a conductive probe tip interface at one end of the cable, a signal conductor, the signal conductor traversing a length of the cable and electrically connected to the conductive probe tip interface, a reference conductor surrounding the signal conductor along the length of the cable, a shield conductor surrounding the reference conductor at least along the length of the cable, the shield conductor and the reference conductor electrically connected at ends of the probe tip, a first insulator between the signal conductor and the reference conductor along the length of the cable, a second insulator between the reference conductor and the shield conductor along the length of the cable, and high magnetic permeability material inside the shield conductor. A method of manufacturing a tip for an isolated probe having a triaxial cable includes accessing a shield conductor of the triaxial cable, inserting a high magnetic permeability material between the shield conductor and a reference conductor in the triaxial cable, electrically connecting the shield conductor to the reference conductor. A triaxial cable has a signal conductor, the signal conductor traversing a length of the cable, a reference conductor surrounding the signal conductor along the length of the cable, a shield conductor surrounding the reference conductor along the length of the cable, the shield conductor and the reference conductor electrically connected at ends of the cable, a first insulator between the signal conductor and the reference conductor along the length of the cable, a second insulator between the reference conductor and the shield conductor along the length of the cable, and high magnetic permeability material inside the shield conductor.
Abstract:
A measurement probe for producing a test signal for a measurement instrument includes a probe head structured to be connected to at least a first testing point and a second testing point of a Device Under Test (DUT), a current detector in the measurement probe structured to determine a current flowing between the first testing point and the second testing point of the DUT, a first selectable signal path that causes a voltage signal from the first testing point or a voltage signal from the second testing point to be routed to the measurement instrument as a selected voltage test signal, and a second selectable signal path that causes a current signal from an output of the current detector to be routed to the measurement instrument as a selected current test signal. Methods of testing a DUT using the measurement probe are also described, as well as a system for measuring signals from a DUT using the measurement probe.
Abstract:
Test and measurement probes include a body, an adjustable member moveably coupled to the body and having a changeable position relative to the body, and a transducer subsystem structured to measure the position of the adjustable member and configured to output a position signal indicative of the position of the adjustable member. A change in the position of the adjustable member causes a change in an electrical characteristic of the probe. A position-dependent correction factor may be used to correct the change in the electrical characteristic. Methods of compensating for a change in a response of a test and measurement system include monitoring a position sensor output to detect a position change of a first part of a probe relative to a second part, determining that the position sensor output value has crossed a boundary value between a first and second range, and applying a compensation factor corresponding to the second range to modify the response of the system.
Abstract:
A signal acquisition system has a signal acquisition probe having probe tip circuitry coupled to a resistive center conductor signal cable. The resistive center conductor signal cable of the signal acquisition probe is coupled to a compensation system in a signal processing instrument via an input node and input circuitry in the signal processing instrument. The signal acquisition probe and the signal processing instrument have mismatched time constants at the input node with the compensation system having an input amplifier with feedback loop circuitry and a shunt pole-zero pair coupled to the input circuitry providing pole-zero pairs for maintaining flatness over the signal acquisition system frequency bandwidth.
Abstract:
An isolated differential current shunt measurement probe for a test and measurement system having an isolation barrier between an input side and output side of the probe. The input side is configured to receive a voltage signal across a current shunt connected to a device under test and transmit the voltage signal across the isolation barrier. The output side is configured to receive the voltage signal across the isolation barrier and output the voltage signal to a test and measurement instrument.
Abstract:
A test and measurement instrument includes one or more processors to execute code to cause the processors to: access a user instance of the test and measurement instrument; receive one or more requests from the user instance of the test and measurement instrument; determine any collisions between the one or more requests and any other requests for elements of the test and measurement instrument; resolve any collisions as necessary; perform one or more operations to fulfill the request; and display information resulting from the one or more operations on an instance user interface.
Abstract:
An accessory device has a test port, an instrument port to connect to an instrument having an operating bandwidth, and one or more configurable signal paths connectable between the test port and the instrument port to convert a signal from the test port having a first frequency range to a signal having a second frequency range different than the first frequency range. A test and measurement system has a test and measurement instrument having an operating bandwidth, and an accessory device. The accessory device has a first instrument port to connect the accessory device to the test and measurement instrument, a test port to connect the accessory device to a device under test, and one or more configurable signal paths connectable between the test port and the instrument port to down-convert a signal from the test port having a first frequency range to a signal having a second frequency range lower than the first frequency range.
Abstract:
A test-probe tip having a tip component, a resistive element, and a compliance member. The tip component is configured to electrically connect to a device under test at a first end of the tip component. The resistive element is electrically connected to a second end of the tip component along a signal-flow axis. The resistive element is configured to provide electrical impedance to an electrical signal passing through the resistive element. The compliance member is configured to allow movement of the tip component in a first direction when a mechanical force applied to the tip component in the first direction and to cause movement of the tip component in an opposite, second direction when the mechanical force applied to the tip component is removed or reduced. Architectures for the resistive element are also described.
Abstract:
A test and measurement probe coupler that may include a substrate, a first signal tap conductor, a first signal contact, a first ground tap conductor, and a first ground contact. The first signal tap conductor may extends a first length along the substrate. The first signal contact may be electrically coupled to the first signal tap conductor, and the first ground tap conductor may extend a second length along the substrate. The first ground tap conductor may be substantially parallel to the first signal tap conductor. The first ground tap conductor may be disposed in a first lateral direction away from the first signal tap conductor, and the first ground contact electrically may be coupled to the first ground tap conductor.
Abstract:
A test and measurement instrument and method for providing post-acquisition trigger control and presentation of associated waveforms on a display. An electrical signal under test is sampled and digitized, and stored in an acquisition memory as a data record. A display device draws a waveform associated with the signal under test. After the acquisition of the digital samples is stopped, a user selects trigger criteria using trigger controls such as a trigger level control. A trigger circuit detects a post-acquisition trigger event in the data record based on the trigger criteria causing an automatic adjustment of the waveform to conform to a time of the post-acquisition trigger event. One or more configurable trigger controls can be used to adjust a display of post-acquisition trigger events and waveforms. Upon resumption of the live-acquisition of data, the live waveform conforms to the newly selected trigger criteria as previewed during the post-acquisition mode.