Abstract:
A signal acquisition system has a signal acquisition probe having probe tip circuitry coupled to a resistive center conductor signal cable. The resistive center conductor signal cable of the signal acquisition probe is coupled to a compensation system in a signal processing instrument via an input node and input circuitry in the signal processing instrument. The signal acquisition probe and the signal processing instrument have mismatched time constants at the input node with the compensation system providing pole-zero pairs for maintaining flatness over the signal acquisition system frequency bandwidth.
Abstract:
A test system can include a probe suitable to be coupled between a test measurement device and a device under test (DUT). The probe can include a signal input to receive an active signal from the DUT and a signal output to provide the active signal to the test measurement device. The probe can also include an input ground to connect to the DUT ground and an output ground to connect to the test measurement device ground. A probe ground connection checking device can automatically determine whether the probe ground connections to the DUT ground and test measurement device ground are solid.
Abstract:
A test system can include a probe suitable to be coupled between a test measurement device and a device under test (DUT). The probe can include a signal input to receive an active signal from the DUT and a signal output to provide the active signal to the test measurement device. The probe can also include an input ground to connect to the DUT ground and an output ground to connect to the test measurement device ground. A probe ground connection checking device can automatically determine whether the probe ground connections to the DUT ground and test measurement device ground are solid.
Abstract:
A test probe tip can include a resistive element coupled with a tip component. The resistive element can include a resistive layer disposed on an exterior surface of a structural member of the resistive impedance element. In embodiments, the resistive element can be configured to form a structural component of the test probe tip without an insulating covering applied thereto. Additional embodiments may be described and/or claimed herein.
Abstract:
A test system can include a probe suitable to be coupled between a test measurement device and a device under test (DUT). The probe can include a signal input to receive an active signal from the DUT and a signal output to provide the active signal to the test measurement device. The probe can also include an input ground to connect to the DUT ground and an output ground to connect to the test measurement device ground. A probe ground connection checking device can automatically determine whether the probe ground connections to the DUT ground and test measurement device ground are solid.
Abstract:
A test probe tip can include a resistive element coupled with a tip component. The resistive element can include a resistive layer disposed on an exterior surface of a structural member of the resistive impedance element. In embodiments, the resistive element can be configured to form a structural component of the test probe tip without an insulating covering applied thereto. Additional embodiments may be described and/or claimed herein.
Abstract:
A test probe tip can include a compliance member or force deflecting assembly and a tip component. The compliance member or force deflecting assembly can include a plunger component and a barrel component to receive the plunger component, wherein the plunger component is configured to slide axially inside the barrel component. The test probe tip can also include a spring mechanism within the barrel component to act on the plunger component, and a resistive/impedance element, e.g., a round rod resistor, coupled with the plunger component at one end and with the tip component at the opposite end.
Abstract:
A test probe tip can include a compliance member or force deflecting assembly and a tip component. The compliance member or force deflecting assembly can include a plunger component and a barrel component to receive the plunger component, wherein the plunger component is configured to slide axially inside the barrel component. The test probe tip can also include a spring mechanism within the barrel component to act on the plunger component, and a resistive/impedance element coupled with the plunger component at one end and with the tip component at the opposite end, the resistive/impedance element including at least one rod having a semi-cylindrical form and a resistive material situated thereon.
Abstract:
A test probe tip can include a compliance member or force deflecting assembly and a tip component. The compliance member or force deflecting assembly can include a plunger component and a barrel component to receive the plunger component, wherein the plunger component is configured to slide axially inside the barrel component. The test probe tip can also include a spring mechanism within the barrel component to act on the plunger component, and a resistive/impedance element, e.g., a round rod resistor, coupled with the plunger component at one end and with the tip component at the opposite end.
Abstract:
A test system can include a probe suitable to be coupled between a test measurement device and a device under test (DUT). The probe can include a signal input to receive an active signal from the DUT and a signal output to provide the active signal to the test measurement device. The probe can also include an input ground to connect to the DUT ground and an output ground to connect to the test measurement device ground. A probe ground connection checking device can automatically determine whether the probe ground connections to the DUT ground and test measurement device ground are solid.