摘要:
A zinc-plated steel sheet with an ageing resistance is produced from an Al-killed steel by hot dip type, continuous zinc plating including recrystallization and annealing, where after recrystallization and grain growth, the steel sheet is quenched at a cooling rate of 30.degree..about.250.degree. C/sec from 720.degree..about.600.degree. C. to 310.degree..about.200.degree. C.; after keeping the steel sheet at the same temperature for 0 to 15 seconds, the steel sheet is reheated to a molten zinc bath temperature; then the steel sheet is dipped into the molten zinc bath for zinc-plating; and then the steel sheet is cooled at a cooling rate of 250 to 5.degree. C./sec from that temperature to 350.degree. C.; and then the steel sheet is cooled at a specific average cooling rate in a temperature region of 350.degree. C. to 300.degree. C. and at a specific average cooling rate in a temperature region of from 300.degree. C. to 285.degree..about.220.degree. C.
摘要:
A cold rolled steel sheet having a good ageing resistance is produced by subjecting a cold rolled steel sheet to continuous annealing including recrystallization, grain growth, quenching, supercooling, reheating and overageing according to inclinatory cooling, where after the recrystallization and the grain growth, the steel sheet is quenched at a cooling rate of 50 to 250.degree. C./sec from 720-600.degree. C. to 200-310.degree. C.; after retaining the steel sheet at the same temperature for 0 to 15 seconds, the steel sheet is reheated by at least 40.degree. C. up to 320-400.degree. C.; then the steel sheet is retained at the same temperature or cooled at a rate of not more than 0.7.degree. C./sec including the time for retaining the steel sheet at the same temperature; and then the steel sheet is cooled at an average cooling rate of not more than 10.degree. C./sec in a temperature zone of higher than 350.degree. C., at a specific average cooling rate in a temperature zone of 350.degree. C. to 300.degree. C. and at a specific average cooling rate down to 285-220.degree. C. in a temperature zone of lower than 300.degree. C.
摘要:
This invention provides a new through weld method to carry out welding of a base metal made of aluminum or that of aluminum alloy using high energy beams wherein a shield gas ambience (an inert gas ambience) to cover a welding site in a submerged-scar is formed, even a shield gas ambience (an inert gas ambience) to cover a welding site irradiated by the high energy beams. Since the former shield gas ambience to cover the submerged-scar pushes the keyhole against the gravity and/or the gas pressure force of the latter shield gas supplied to the laser irradiation side, then the forming of hang down of beads and the resultant projection of the welding base metal are prevented.
摘要:
A laser welding device for executing stable, highly reliable edge joint welding by laser beam comprises: a laser beam emitting head directed to a layered bonding position on an end surface in an edge of a layered base material; a first set of rollers for being along one plane of the base material; a second set of rollers for being along the other plane opposing the plane; a first member which rotatably supports the rollers and which is coupled with the head; a second member which rotatably supports the rollers and which is coupled with the head; and a pressing means for driving at least one of the first and second members and in a direction in which the gap between the rollers and the rollers is reduced in order to sandwich and press the base material by means of the rollers.
摘要:
A combined welding method with a filler wire using both a YAG laser and an electric arc, and a combined welding device with a filler wire using both a YAG laser and an electric arc. The welding is performed by directing a laser focus of a YAG laser on base materials and for welding in the vicinity of the focus by a filler wire, connecting a power source for applying a voltage to the filler wire between the filler wire and the base materials for welding, irradiating a YAG laser on the base materials for welding in the connecting condition, whereby an arc is induced to the filler wire by a plume (plasma-activated gas and the metal vapor), and holding the plume generated by YAG laser inside and outside of a keyhole.
摘要:
A laser light L is emitted from a laser light source 6 to workpieces 1, 2, to form a laser molten weld pool 3, and immediately thereafter, an arc molten weld pool 4 is formed using an arc welding machine 7; thereby plates 1, 2 are welded. The arc welding machine 7 is provided with a filler wire to form a bead 5 on the plate 1. With the welding process according to the present invention, workpieces can be efficiently and securely welded regardless of shape and material of the workpieces.
摘要:
A combined YAG laser/arc welding apparatus performs a welding operation with a large depth of fusion and a deep fusion at a high efficiency. The welding apparatus includes an arc electrode which targets a point on a member being welded where a laser beam from a YAG laser is focused. While an arc power supply is connected between the arc electrode and the member being welded, the member being welded is irradiated by the YAG laser to produce plasmoid gasses and metal vapors or a plume which is effective to start an arc from the arc electrode. A combined YAG laser/arc welding operation takes place while keeping the plume within and without a keyhole. Welded surface is covered by a hood, and a shielded gas passed through a commutation metal network surrounds the welded focus to prevent an oxidation and keeps the plume maintained. A filler wire is fed to a molten pool.
摘要:
An aluminum alloy sheet for high-speed high-temperature blow forming has an aluminum alloy containing 4 to 5% of Mg, 0.35 to 0.5% of Mn and 0.001 to 0.05% of Cr, 0.6% or less of Si+Fe, 0.15% or less of Cu, and the balance being substantially Al. The aluminum alloy sheet has an elongation of 150% or more in a high-temperature tensile test at 400 to 550° C. and at a strain rate of 10−2/second or more, has a cavitation area percentage of 2% or less at the time of 100% tensile deformation, and is free from any abnormally grown grains of 100 microns or more. A formed piece of the aluminum alloy sheet also has a cavitation area percentage of 2% or less when blow-formed at 400 to 550° C. and at a reduction in sheet thickness of 65% or less, and is free from any abnormally grown grains of 100 microns or more.
摘要:
A combined welding method with a filler wire using both a YAG laser and an electric arc, and a combined welding device with a filler wire using both a YAG laser and an electric arc, a welding in which a welding gap margin is broad, height and shape of reinforcement of weld, and penetration depth are preferable, can be effectively performed by the method or the device. The welding is performed by directing a laser focus 8 of a YAG laser 9 on base materials 31 and 32 for welding or the vicinity of the focus 8 by a filler wire 20, connecting a power source 22 for applying a voltage to the filler wire between the filler wire 20 and the base materials for welding, irradiating a YAG laser on the base materials for welding in the connecting condition, whereby an arc is induced to the filler wire by a plume (plasma-activated gas and the metal vapor), and holding the plume generated by YAG laser inside and outside of a keyhole.
摘要:
A twin spots pulse laser welding apparatus is disclosed which is used for providing a defect-free weld in a butt welding gap. The welding apparatus comprises a YAG laser oscillator 6, a chopper circuit for controlling the value of the lamp current of the oscillator, a chopping controller 12, a control panel 10 and a pulse generator 11 for applying a lamp current base value Wb and a peak value Wp and a pulsating pulse to the controller, and a twin spots laser head 14 for converging a laser beam delivered from the YAG laser oscillator to two foci 20R, 20L which are distributed in x direction with a very small spacing therebetween. YAG laser beam delivered from the YAG laser oscillator 6 is guided through an optical fiber cable 9 to the laser head.